Suppr超能文献

用于有限训练数据图像分类的切片瓦瑟斯坦空间中的不变性编码

Invariance encoding in sliced-Wasserstein space for image classification with limited training data.

作者信息

Shifat-E-Rabbi Mohammad, Zhuang Yan, Li Shiying, Rubaiyat Abu Hasnat Mohammad, Yin Xuwang, Rohde Gustavo K

机构信息

Imaging and Data Science Laboratory, University of Virginia, Charlottesville, VA 22908, USA.

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Pattern Recognit. 2023 May;137. doi: 10.1016/j.patcog.2022.109268. Epub 2022 Dec 22.

Abstract

Deep convolutional neural networks (CNNs) are broadly considered to be state-of-the-art generic end-to-end image classification systems. However, they are known to underperform when training data are limited and thus require data augmentation strategies that render the method computationally expensive and not always effective. Rather than using a data augmentation strategy to encode invariances as typically done in machine learning, here we propose to mathematically augment a nearest subspace classification model in sliced-Wasserstein space by exploiting certain mathematical properties of the Radon Cumulative Distribution Transform (R-CDT), a recently introduced image transform. We demonstrate that for a particular type of learning problem, our mathematical solution has advantages over data augmentation with deep CNNs in terms of classification accuracy and computational complexity, and is particularly effective under a limited training data setting. The method is simple, effective, computationally efficient, non-iterative, and requires no parameters to be tuned. Python code implementing our method is available at https://github.com/rohdelab/mathematical augmentation. Our method is integrated as a part of the software package PyTransKit, which is available at https://github.com/rohdelab/PyTransKit.

摘要

深度卷积神经网络(CNNs)被广泛认为是最先进的通用端到端图像分类系统。然而,众所周知,当训练数据有限时,它们的性能会下降,因此需要数据增强策略,这使得该方法在计算上成本高昂且并不总是有效。与通常在机器学习中使用数据增强策略来编码不变性不同,在这里,我们建议通过利用最近引入的图像变换——拉东累积分布变换(R-CDT)的某些数学特性,在切片瓦瑟斯坦空间中对最近子空间分类模型进行数学增强。我们证明,对于特定类型的学习问题,我们的数学解决方案在分类准确性和计算复杂度方面优于使用深度CNN进行数据增强,并且在训练数据有限的情况下特别有效。该方法简单、有效、计算效率高、非迭代,且无需调整参数。实现我们方法的Python代码可在https://github.com/rohdelab/mathematical augmentation获取。我们的方法作为软件包PyTransKit的一部分进行了集成,该软件包可在https://github.com/rohdelab/PyTransKit获取。

相似文献

2
Radon Cumulative Distribution Transform Subspace Modeling for Image Classification.用于图像分类的氡累积分布变换子空间建模
J Math Imaging Vis. 2021 Nov;63(9):1185-1203. doi: 10.1007/s10851-021-01052-0. Epub 2021 Aug 5.
3
End-to-End Signal Classification in Signed Cumulative Distribution Transform Space.符号累积分布变换空间中的端到端信号分类
IEEE Trans Pattern Anal Mach Intell. 2024 Sep;46(9):5936-5950. doi: 10.1109/TPAMI.2024.3372455. Epub 2024 Aug 6.
9
Biomedical image augmentation using Augmentor.使用 Augmentor 进行生物医学图像增强。
Bioinformatics. 2019 Nov 1;35(21):4522-4524. doi: 10.1093/bioinformatics/btz259.

引用本文的文献

3
End-to-End Signal Classification in Signed Cumulative Distribution Transform Space.符号累积分布变换空间中的端到端信号分类
IEEE Trans Pattern Anal Mach Intell. 2024 Sep;46(9):5936-5950. doi: 10.1109/TPAMI.2024.3372455. Epub 2024 Aug 6.

本文引用的文献

2
Radon Cumulative Distribution Transform Subspace Modeling for Image Classification.用于图像分类的氡累积分布变换子空间建模
J Math Imaging Vis. 2021 Nov;63(9):1185-1203. doi: 10.1007/s10851-021-01052-0. Epub 2021 Aug 5.
3
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
5
Cell Image Classification: A Comparative Overview.细胞图像分类:比较综述。
Cytometry A. 2020 Apr;97(4):347-362. doi: 10.1002/cyto.a.23984. Epub 2020 Feb 10.
6
Biomedical image augmentation using Augmentor.使用 Augmentor 进行生物医学图像增强。
Bioinformatics. 2019 Nov 1;35(21):4522-4524. doi: 10.1093/bioinformatics/btz259.
7
Transport-based model for turbulence-corrupted imagery.基于传输的湍流干扰图像模型。
Appl Opt. 2018 Jun 1;57(16):4524-4536. doi: 10.1364/AO.57.004524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验