Akaishi Ryushiro, Kitazawa Kohei, Gotoh Kazuhiro, Kato Shinya, Usami Noritaka, Kurokawa Yasuyoshi
Material Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Syouwa-ku, Nagoya, 466-8555, Japan.
Nanoscale Res Lett. 2020 Feb 10;15(1):39. doi: 10.1186/s11671-020-3272-8.
Silicon quantum dot (Si-QD) embedded in amorphous silicon oxide is used for p-i-n solar cell on quartz substrate as a photogeneration layer. To suppress diffusion of phosphorus from an n-type layer to a Si-QD photogeneration layer, niobium-doped titanium oxide (TiO:Nb) is adopted. Hydrofluoric acid treatment is carried out for a part of the samples to remove the thermal oxide layer in the interface of TiO:Nb/n-type layer. The thermal oxide acts as a photo-generated carrier-blocking layer. Solar cell properties using 10-nm-thick TiO:Nb without the thermal oxide are better than those with the thermal oxide, notably short circuit current density is improved up to 1.89 mA/cm. The photo-generated carrier occurs in Si-QD with quantum confinement effect. The 10-nm-thick TiO:Nb with the thermal oxide layer effectively blocks P; however, P-diffusion is not completely suppressed by the 10-nm-thick TiO:Nb without the thermal oxide. These results indicate that the total thickness of TiO:Nb and thermal oxide layer influence the P-blocking effect. To achieve the further improvement of Si-QD solar cell, over 10-nm-thick TiO:Nb is needed.
嵌入非晶硅氧化物中的硅量子点(Si-QD)被用作石英衬底上p-i-n太阳能电池的光生层。为了抑制磷从n型层扩散到Si-QD光生层,采用了掺铌氧化钛(TiO:Nb)。对部分样品进行氢氟酸处理,以去除TiO:Nb/n型层界面处的热氧化层。该热氧化层起到光生载流子阻挡层的作用。使用不含热氧化层的10纳米厚TiO:Nb的太阳能电池性能优于含热氧化层的,特别是短路电流密度提高到了1.89 mA/cm。光生载流子在具有量子限制效应的Si-QD中产生。具有热氧化层的10纳米厚TiO:Nb有效地阻挡了磷;然而,不含热氧化层的10纳米厚TiO:Nb并不能完全抑制磷的扩散。这些结果表明,TiO:Nb和热氧化层的总厚度会影响磷的阻挡效果。为了进一步提高Si-QD太阳能电池的性能,需要超过10纳米厚的TiO:Nb。