Sun Chun-Ling, Xu Cong, Itani Omar, Christensen Elyse L, Vijay Harshitha, Ho Jessica, Correa-Medina Abraham, Klingler Christian B, Mathew Neal D, Flibotte Stephane, Humphreys Ian R, Rubalcaba Diego Delgadillo, Ritter Alison E, Desbois Muriel, Grill Brock, Crowder C Michael
Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
Curr Biol. 2025 Jun 9;35(11):2567-2582.e5. doi: 10.1016/j.cub.2025.04.040. Epub 2025 May 7.
Mechanistic target of rapamycin (mTOR) functions in mTOR complex 1 (mTORC1) with raptor to match metazoan metabolism to available nutrients to regulate multiple cellular, physiological, and pathological processes. Hypoxic cellular injury is influenced by the mTORC1 pathway, but whether its activity promotes or prevents injury is unclear, and which mTORC1-regulated mechanisms control hypoxic injury are obscure. Here, we report the discovery of a hypoxia-resistant, temperature-sensitive raptor mutant in an unbiased forward mutagenesis screen in C. elegans. This raptor mutant is both hypoxia resistant and long lived at intermediate temperatures, while unable to develop at higher temperatures. Temperature-shift experiments show that the conditional hypoxia resistance can be induced in the raptor mutant immediately prior to the hypoxic insult. At these intermediate temperatures, the raptor mutation selectively reduces protein synthesis without affecting autophagy, and epistasis experiments implicate mTOR-targeted translation regulators as components of the hypoxia resistance mechanism. Using the conditional developmental arrest phenotype in a selection for suppressors of raptor loss of function, we isolated multiple second-site raptor missense mutants, whose mutated residue is predicted to interact with RagA, a raptor-binding protein. These suppressor mutations restore normal protein synthesis, hypoxic sensitivity, and lifespan and thereby implicate raptor-RagA interactions as critical to these biological processes.
雷帕霉素作用机制靶点(mTOR)与 Raptor 在 mTOR 复合物 1(mTORC1)中发挥作用,使后生动物的新陈代谢与可用营养物质相匹配,从而调节多种细胞、生理和病理过程。缺氧性细胞损伤受 mTORC1 信号通路影响,但其活性是促进还是预防损伤尚不清楚,且 mTORC1 调节缺氧损伤的具体机制也不明确。在此,我们报告在秀丽隐杆线虫的一项无偏向正向诱变筛选中发现了一种抗缺氧、温度敏感的 Raptor 突变体。该 Raptor 突变体在中等温度下既抗缺氧又长寿,而在较高温度下无法发育。温度转换实验表明,在缺氧损伤前可立即在 Raptor 突变体中诱导出条件性抗缺氧能力。在这些中等温度下,Raptor 突变选择性地减少蛋白质合成而不影响自噬,上位性实验表明 mTOR 靶向的翻译调节因子是抗缺氧机制的组成部分。利用 Raptor 功能丧失的抑制子筛选中的条件性发育停滞表型,我们分离出多个第二位点 Raptor 错义突变体,其突变残基预计与 Raptor 结合蛋白 RagA 相互作用。这些抑制子突变恢复了正常的蛋白质合成、缺氧敏感性和寿命,从而表明 Raptor - RagA 相互作用对这些生物学过程至关重要。