超声渗透作用下经血脑屏障纳米递药的多模态多尺度光学成像。

Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation.

机构信息

Institute for Experimental Molecular Imaging (ExMI), University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.

DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen, Germany.

出版信息

Theranostics. 2020 Jan 12;10(4):1948-1959. doi: 10.7150/thno.41161. eCollection 2020.

Abstract

: The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Sonopermeation, which relies on the combination of ultrasound and microbubbles, has emerged as a powerful tool to permeate the BBB, enabling the extravasation of drugs and drug delivery systems (DDS) to and into the central nervous system (CNS). When aiming to improve the treatment of high medical need brain disorders, it is important to systematically study nanomedicine translocation across the sonopermeated BBB. To this end, we here employed multimodal and multiscale optical imaging to investigate the impact of DDS size on brain accumulation, extravasation and penetration upon sonopermeation. : Two prototypic DDS, i.e. 10 nm-sized pHPMA polymers and 100 nm-sized PEGylated liposomes, were labeled with fluorophores and intravenously injected in healthy CD-1 nude mice. Upon sonopermeation, computed tomography-fluorescence molecular tomography, fluorescence reflectance imaging, fluorescence microscopy, confocal microscopy and stimulated emission depletion nanoscopy were used to study the effect of DDS size on their translocation across the BBB. : Sonopermeation treatment enabled safe and efficient opening of the BBB, which was confirmed by staining extravasated endogenous IgG. No micro-hemorrhages, edema and necrosis were detected in H&E stainings. Multimodal and multiscale optical imaging showed that sonopermeation promoted the accumulation of nanocarriers in mouse brains, and that 10 nm-sized polymeric DDS accumulated more strongly and penetrated deeper into the brain than 100 nm-sized liposomes. : BBB opening via sonopermeation enables safe and efficient delivery of nanomedicine formulations to and into the brain. When looking at accumulation and penetration (and when neglecting issues such as drug loading capacity and therapeutic efficacy) smaller-sized DDS are found to be more suitable for drug delivery across the BBB than larger-sized DDS. These findings are valuable for better understanding and further developing nanomedicine-based strategies for the treatment of CNS disorders.

摘要

血脑屏障(BBB)是药物递送到大脑的主要障碍。声渗透依赖于超声和微泡的结合,已成为渗透 BBB 的有力工具,使药物和药物递送系统(DDS)能够渗出并递送到中枢神经系统(CNS)。当旨在改善高医疗需求脑疾病的治疗时,重要的是系统地研究纳米医学穿过声渗透 BBB 的转运。为此,我们采用多模态和多尺度光学成像来研究 DDS 大小对声渗透后脑内积累、渗出和渗透的影响。

两种原型 DDS,即 10nm 大小的 pHPMA 聚合物和 100nm 大小的 PEGylated 脂质体,用荧光团标记并静脉注射到健康的 CD-1 裸鼠中。在声渗透后,使用计算机断层扫描-荧光分子断层扫描、荧光反射成像、荧光显微镜、共聚焦显微镜和受激发射损耗纳米显微镜研究 DDS 大小对其穿过 BBB 转运的影响。

声渗透处理能够安全有效地打开 BBB,这通过染色渗出的内源性 IgG 得到证实。H&E 染色未检测到微出血、水肿和坏死。多模态和多尺度光学成像表明,声渗透促进了纳米载体在小鼠大脑中的积累,并且 10nm 大小的聚合物 DDS 比 100nm 大小的脂质体更强烈地积累并更深入地渗透到大脑中。

通过声渗透打开 BBB 能够安全有效地将纳米医学制剂递送到大脑中。当考虑到积累和渗透(以及忽略药物载药量和治疗效果等问题)时,与较大尺寸的 DDS 相比,较小尺寸的 DDS 更适合穿过 BBB 进行药物递送。这些发现对于更好地理解和进一步开发基于纳米医学的 CNS 疾病治疗策略具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索