Chen Zheng, Corkett Alex J, de Bruin-Dickason Caspar, Chen Jianhong, Rokicińska Anna, Kuśtrowski Piotr, Dronskowski Richard, Slabon Adam
Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden.
Inorg Chem. 2020 Sep 21;59(18):13589-13597. doi: 10.1021/acs.inorgchem.0c01947. Epub 2020 Sep 4.
Bismuth(III) oxide-carbodiimide (BiONCN) has been recently discovered as a novel mixed-anion semiconductor, which is structurally related to bismuth oxides and oxysulfides. Given the structural versatility of these layered structures, we investigated the unexplored photochemical properties of the target compound for photoelectrochemical (PEC) water oxidation. Although BiONCN does not generate a noticeable photocurrent as a single photoabsorber, the fabrication of heterojunctions with the WO thin film electrode shows an upsurge of current density from 0.9 to 1.1 mA cm at 1.23 V vs reversible hydrogen electrode (RHE) under 1 sun (AM 1.5G) illumination in phosphate electrolyte (pH 7.0). Mechanistic analysis and structural analysis using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (STEM EDX) indicate that BiONCN transforms during operating conditions to a core-shell structure BiONCN/BiPO. When compared to WO/BiPO, the electrolyte-activated WO/BiONCN photoanode shows a higher photocurrent density due to superior charge separation across the oxide/oxide-carbodiimide interface layer. Changing the electrolyte from phosphate to sulfate results in a lower photocurrent and shows that the electrolyte determines the surface chemistry and mediates the PEC activity of the metal oxide-carbodiimide. A similar trend could be observed for CuWO thin film photoanodes. These results show the potential of metal oxide-carbodiimides as relatively novel representatives of mixed-anion compounds and shed light on the importance of the control over the surface chemistry to enable the activation.
氧化铋碳二亚胺(BiONCN)最近被发现是一种新型混合阴离子半导体,其结构与氧化铋和氧硫化铋相关。鉴于这些层状结构的结构多样性,我们研究了目标化合物用于光电化学(PEC)水氧化的未被探索的光化学性质。尽管BiONCN作为单一光吸收剂不会产生明显的光电流,但在磷酸盐电解质(pH 7.0)中,在1个太阳(AM 1.5G)光照下,与WO薄膜电极形成异质结时,在相对于可逆氢电极(RHE)为1.23 V时,电流密度从0.9 mA cm² 激增到1.1 mA cm² 。使用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和扫描透射电子显微镜能量色散X射线光谱(STEM EDX)进行的机理分析和结构分析表明,BiONCN在操作条件下转变为核壳结构BiONCN/BiPO₄。与WO₃/BiPO₄相比,电解质激活的WO₃/BiONCN光阳极由于在氧化物/氧化物 - 碳二亚胺界面层上具有优异的电荷分离而显示出更高的光电流密度。将电解质从磷酸盐改为硫酸盐会导致光电流降低,这表明电解质决定了表面化学性质并介导了金属氧化物 - 碳二亚胺的PEC活性。对于CuWO₃薄膜光阳极也可以观察到类似的趋势。这些结果表明金属氧化物 - 碳二亚胺作为混合阴离子化合物的相对新型代表的潜力,并揭示了控制表面化学以实现激活的重要性。