Hofmann Anna I, Östergren Ida, Kim Youngseok, Fauth Sven, Craighero Mariavittoria, Yoon Myung-Han, Lund Anja, Müller Christian
Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Göteborg , Sweden.
School of Materials Science and Engineering , Gwangju Institute of Science and Technology , 61005 Gwangju , Republic of Korea.
ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8713-8721. doi: 10.1021/acsami.9b20615. Epub 2020 Feb 11.
Because of their attractive mechanical properties, conducting polymers are widely perceived as materials of choice for wearable electronics and electronic textiles. However, most state-of-the-art conducting polymers contain harmful dopants and are only processable from solution but not in bulk, restricting the design possibilities for applications that require conducting micro-to-millimeter scale structures, such as textile fibers or thermoelectric modules. In this work, we present a strategy based on melt processing that enables the fabrication of nonhazardous, all-polymer conducting bulk structures composed of poly(3,4-ethylenedioxythiophene) (PEDOT) polymerized within a Nafion template. Importantly, we employ classical polymer processing techniques including melt extrusion followed by fiber spinning or fused filament 3D printing, which cannot be implemented with the majority of doped polymers. To demonstrate the versatility of our approach, we fabricated melt-spun PEDOT:Nafion fibers, which are highly flexible, retain their conductivity of about 3 S cm upon stretching to 100% elongation, and can be used to construct organic electrochemical transistors (OECTs). Furthermore, we demonstrate the precise 3D printing of complex conducting structures from OECTs to centimeter-sized PEDOT:Nafion figurines and millimeter-thick 100-leg thermoelectric modules on textile substrates. Thus, our strategy opens up new possibilities for the design of conducting, all-polymer bulk structures and the development of wearable electronics and electronic textiles.
由于其具有吸引人的机械性能,导电聚合物被广泛视为可穿戴电子产品和电子纺织品的首选材料。然而,大多数最先进的导电聚合物含有有害掺杂剂,并且只能从溶液中加工而不能进行本体加工,这限制了对需要导电微至毫米尺度结构的应用(如纺织纤维或热电模块)的设计可能性。在这项工作中,我们提出了一种基于熔体加工的策略,该策略能够制造由在Nafion模板内聚合的聚(3,4 - 乙撑二氧噻吩)(PEDOT)组成的无危害、全聚合物导电本体结构。重要的是,我们采用了经典的聚合物加工技术,包括熔体挤出后进行纤维纺丝或熔丝3D打印,而大多数掺杂聚合物无法实现这些技术。为了证明我们方法的通用性,我们制造了熔纺PEDOT:Nafion纤维,这些纤维具有高度柔韧性,在拉伸至100%伸长率时仍保持约3 S cm的电导率,并且可用于构建有机电化学晶体管(OECT)。此外,我们展示了从OECT到厘米大小的PEDOT:Nafion小雕像以及在纺织基材上的毫米厚100腿热电模块的复杂导电结构的精确3D打印。因此,我们的策略为导电全聚合物本体结构的设计以及可穿戴电子产品和电子纺织品的开发开辟了新的可能性。