Dyck Ondrej, Jesse Stephen, Delby Niklas, Kalinin Sergei V, Lupini Andrew R
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Ultramicroscopy. 2020 Apr;211:112949. doi: 10.1016/j.ultramic.2020.112949. Epub 2020 Feb 1.
The precisely focused electron beam (e-beam) in scanning transmission electron microscopy has been found to be a versatile tool for patterning matter on the atomic level and enabling atom-by-atom fabrication, however, beam-induced phenomena are known to be extremely sensitive to the e-beam energy and are closely correlated with the proximity of the knock-on threshold. Here we provide a method to control the energy transferred to the sample while facilitating much faster changes in accelerating voltages by maintaining a nearly constant temperature in the electron microscope lenses. We use this method to demonstrate in-situ nano-milling of a graphene film followed rapidly by "gentler" imaging at lower energy. Additionally, the insertion and controlled movement of silicon dopants in graphene is demonstrated by employing a different e-beam energy during each process. We believe the incorporation of variable e-beam energy will broaden the potential for atomic scale e-beam fabrication.
扫描透射电子显微镜中精确聚焦的电子束已被证明是一种用于在原子水平上对物质进行图案化以及实现逐个原子制造的通用工具。然而,已知束流诱导现象对电子束能量极为敏感,并且与撞击阈值的接近程度密切相关。在此,我们提供一种方法,通过在电子显微镜透镜中保持近乎恒定的温度,在促进加速电压更快变化的同时,控制传递到样品的能量。我们使用这种方法展示了对石墨烯薄膜进行原位纳米铣削,随后在较低能量下快速进行“更温和”的成像。此外,通过在每个过程中采用不同的电子束能量,证明了硅掺杂剂在石墨烯中的插入和可控移动。我们相信可变电子束能量的引入将拓宽原子尺度电子束制造的潜力。