Jesse Stephen, Hudak Bethany M, Zarkadoula Eva, Song Jiaming, Maksov Artem, Fuentes-Cabrera Miguel, Ganesh Panchapakesan, Kravchenko Ivan, Snijders Panchapakesan C, Lupini Andrew R, Borisevich Albina Y, Kalinin Sergei V
The Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America. The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America.
Nanotechnology. 2018 Jun 22;29(25):255303. doi: 10.1088/1361-6528/aabb79. Epub 2018 Apr 4.
Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.
半导体制造是现代文明的支柱,支撑着日常生活中的众多应用和技术。然而,尽管小于10纳米的器件已进入主流,但摩尔定律路线图的终点仍缺乏能够在亚纳米和原子水平上进行体半导体制造的工具,基于探针的操纵是目前已知的唯一途径。在此,我们证明扫描透射电子显微镜的原子尺寸聚焦束可用于在原子水平上操纵诸如硅之类的半导体,诱导非晶相结晶硅的生长、再入非晶化、铣削以及掺杂剂前沿移动。这些现象通过原子分辨率实时可视化。我们还基于实时图像分析实现了主动反馈控制,以自动控制电子束运动,实现形状控制,并为在不久的将来对制造结构进行逐个原子的校正提供了一条途径。这些观察结果开启了体材料逐个原子制造的新纪元,这是纳米技术长期以来的梦想。