Suppr超能文献

机器学习在癌症药物联合治疗中的应用。

Machine Learning for Cancer Drug Combination.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Clin Pharmacol Ther. 2020 Apr;107(4):749-752. doi: 10.1002/cpt.1773. Epub 2020 Feb 11.

Abstract

When treating multiple complex diseases, such as cancer, polytherapy may demonstrate efficiency than monotherapy. However, due to the multiplicative relationship between the number of drugs and cell lines vs. the number of combinations, it is impractical to test all drug combinations using high-throughput preclinical approaches. An alternative to experimental tests is predicting drug synergy through computational models. Here, we summarize recent computational approaches for predicting drug synergy, discuss current limitations, and propose future directions.

摘要

在治疗多种复杂疾病(如癌症)时,联合治疗可能比单药治疗更有效。然而,由于药物数量与细胞系数量与组合数量之间呈乘法关系,使用高通量临床前方法测试所有药物组合是不切实际的。实验测试的替代方法是通过计算模型预测药物协同作用。在这里,我们总结了最近用于预测药物协同作用的计算方法,讨论了当前的局限性,并提出了未来的方向。

相似文献

1
Machine Learning for Cancer Drug Combination.机器学习在癌症药物联合治疗中的应用。
Clin Pharmacol Ther. 2020 Apr;107(4):749-752. doi: 10.1002/cpt.1773. Epub 2020 Feb 11.
3
Is one-shot learning a viable option in drug discovery?一次性学习在药物发现中是一个可行的选择吗?
Expert Opin Drug Discov. 2019 Jul;14(7):601-603. doi: 10.1080/17460441.2019.1593368. Epub 2019 Mar 18.
4
The Computational Models of Drug-target Interaction Prediction.药物-靶点相互作用预测的计算模型
Protein Pept Lett. 2020;27(5):348-358. doi: 10.2174/0929866526666190410124110.
7
Lessons learnt from machine learning in early stages of drug discovery.药物发现早期阶段机器学习的经验教训。
Expert Opin Drug Discov. 2024 Jun;19(6):631-633. doi: 10.1080/17460441.2024.2354279. Epub 2024 May 10.
9
Machine Learning in Drug Discovery and Development Part 1: A Primer.机器学习在药物发现和开发中的应用(一):概论。
CPT Pharmacometrics Syst Pharmacol. 2020 Mar;9(3):129-142. doi: 10.1002/psp4.12491. Epub 2020 Mar 11.
10
Pharma blockchains AI for drug development.用于药物研发的制药区块链人工智能。
Lancet. 2019 Jun 15;393(10189):2382. doi: 10.1016/S0140-6736(19)31401-1.

本文引用的文献

1
Gaussian Embedding for Large-scale Gene Set Analysis.用于大规模基因集分析的高斯嵌入
Nat Mach Intell. 2020 Jul;2(7):387-395. doi: 10.1038/s42256-020-0193-2. Epub 2020 Jun 15.
3
The Missing Pieces of Artificial Intelligence in Medicine.人工智能在医学中的缺失环节。
Trends Pharmacol Sci. 2019 Aug;40(8):555-564. doi: 10.1016/j.tips.2019.06.001. Epub 2019 Jul 2.
5
Network-based prediction of drug combinations.基于网络的药物组合预测。
Nat Commun. 2019 Mar 13;10(1):1197. doi: 10.1038/s41467-019-09186-x.
7
Network Propagation Predicts Drug Synergy in Cancers.网络传播预测癌症中的药物协同作用。
Cancer Res. 2018 Sep 15;78(18):5446-5457. doi: 10.1158/0008-5472.CAN-18-0740. Epub 2018 Jul 27.
8
Deep reinforcement learning for de novo drug design.基于深度强化学习的从头药物设计。
Sci Adv. 2018 Jul 25;4(7):eaap7885. doi: 10.1126/sciadv.aap7885. eCollection 2018 Jul.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验