Suppr超能文献

用单溴丁二酰亚胺对β-arrestin 进行位点定向标记,以测量其与 G 蛋白偶联受体的相互作用。

Site-directed labeling of β-arrestin with monobromobimane for measuring their interaction with G protein-coupled receptors.

机构信息

Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.

Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.

出版信息

Methods Enzymol. 2020;633:271-280. doi: 10.1016/bs.mie.2019.11.009. Epub 2019 Dec 5.

Abstract

β-arrestins (βarrs) are multifunctional proteins that interact with activated and phosphorylated G protein-coupled receptors (GPCRs) to regulate their signaling and trafficking. Understanding the intricate details of GPCR-βarr interaction continues to be a key research area in the field of GPCR biology. Bimane fluorescence spectroscopy has been one of the key approaches among a broad range of methods employed to study GPCR-βarr interaction using purified and reconstituted system. Here, we present a step-by-step protocol for labeling βarrs with monobromobimane (mBBr) in a site-directed fashion for measuring their interaction with GPCRs and the resulting conformational changes. This simple protocol can be directly applied to other protein-protein interaction modules as well for measuring interactions and conformational changes in reconstituted systems in vitro.

摘要

β-arrestins(βarrs)是多功能蛋白,可与激活和磷酸化的 G 蛋白偶联受体(GPCR)相互作用,调节它们的信号转导和运输。了解 GPCR-βarr 相互作用的复杂细节仍然是 GPCR 生物学领域的一个关键研究领域。双马来酰亚胺荧光光谱法是广泛应用于使用纯化和重组系统研究 GPCR-βarr 相互作用的方法之一。在这里,我们提供了一种逐步方案,用于以定点方式标记βarrs 与单溴代双马来酰亚胺(mBBr),以测量它们与 GPCR 的相互作用以及由此产生的构象变化。这个简单的方案也可以直接应用于其他蛋白质-蛋白质相互作用模块,用于测量体外重组系统中的相互作用和构象变化。

相似文献

1
Site-directed labeling of β-arrestin with monobromobimane for measuring their interaction with G protein-coupled receptors.
Methods Enzymol. 2020;633:271-280. doi: 10.1016/bs.mie.2019.11.009. Epub 2019 Dec 5.
2
Novel Structural Insights into GPCR-β-Arrestin Interaction and Signaling.
Trends Cell Biol. 2017 Nov;27(11):851-862. doi: 10.1016/j.tcb.2017.05.008. Epub 2017 Jun 23.
3
Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G-protein-coupled receptors.
J Biol Chem. 2020 Jul 24;295(30):10153-10167. doi: 10.1074/jbc.RA120.013470. Epub 2020 May 21.
4
Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes.
Cell. 2020 Mar 19;180(6):1041-1043. doi: 10.1016/j.cell.2020.02.047. Epub 2020 Mar 12.
5
The GPCR-β-arrestin complex allosterically activates C-Raf by binding its amino terminus.
J Biol Chem. 2021 Dec;297(6):101369. doi: 10.1016/j.jbc.2021.101369. Epub 2021 Oct 30.
6
Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation.
Mol Cell. 2023 Jun 15;83(12):2091-2107.e7. doi: 10.1016/j.molcel.2023.04.025. Epub 2023 May 19.
7
β-arrestins and G protein-coupled receptor trafficking.
Handb Exp Pharmacol. 2014;219:173-86. doi: 10.1007/978-3-642-41199-1_9.
8
Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes.
Curr Opin Struct Biol. 2022 Aug;75:102406. doi: 10.1016/j.sbi.2022.102406. Epub 2022 Jun 20.
9
[β-arrestins, their mechanisms of action and multiple roles in the biology of G protein-coupled receptors].
Biol Aujourdhui. 2021;215(3-4):107-118. doi: 10.1051/jbio/2021010. Epub 2022 Mar 11.
10
Signaling at the endosome: cryo-EM structure of a GPCR-G protein-beta-arrestin megacomplex.
FEBS J. 2021 Apr;288(8):2562-2569. doi: 10.1111/febs.15773. Epub 2021 Mar 8.

引用本文的文献

1
Lipids modulate the dynamics of GPCR:β-arrestin interaction.
Nat Commun. 2025 May 29;16(1):4982. doi: 10.1038/s41467-025-59842-8.
2
Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions.
Chem Rec. 2024 Feb;24(2):e202300232. doi: 10.1002/tcr.202300232. Epub 2023 Sep 11.

本文引用的文献

1
2
Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9.
Sci Signal. 2018 Sep 25;11(549):eaat7650. doi: 10.1126/scisignal.aat7650.
3
Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation.
Nat Struct Mol Biol. 2018 Jun;25(6):538-545. doi: 10.1038/s41594-018-0071-3. Epub 2018 Jun 5.
4
GPCRs and Signal Transducers: Interaction Stoichiometry.
Trends Pharmacol Sci. 2018 Jul;39(7):672-684. doi: 10.1016/j.tips.2018.04.002. Epub 2018 May 5.
5
Structural Basis of Arrestin-Dependent Signal Transduction.
Trends Biochem Sci. 2018 Jun;43(6):412-423. doi: 10.1016/j.tibs.2018.03.005. Epub 2018 Apr 7.
6
Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3834-3839. doi: 10.1073/pnas.1722336115. Epub 2018 Mar 26.
7
A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis.
Nat Nanotechnol. 2017 Dec;12(12):1190-1198. doi: 10.1038/nnano.2017.188. Epub 2017 Oct 2.
8
Novel Structural Insights into GPCR-β-Arrestin Interaction and Signaling.
Trends Cell Biol. 2017 Nov;27(11):851-862. doi: 10.1016/j.tcb.2017.05.008. Epub 2017 Jun 23.
9
Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation.
Mol Biol Cell. 2017 Apr 15;28(8):1003-1010. doi: 10.1091/mbc.E16-12-0818. Epub 2017 Feb 22.
10
Functional competence of a partially engaged GPCR-β-arrestin complex.
Nat Commun. 2016 Nov 9;7:13416. doi: 10.1038/ncomms13416.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验