Suppr超能文献

硅量子点中s、p、d和f电子的相干自旋控制

Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot.

作者信息

Leon R C C, Yang C H, Hwang J C C, Lemyre J Camirand, Tanttu T, Huang W, Chan K W, Tan K Y, Hudson F E, Itoh K M, Morello A, Laucht A, Pioro-Ladrière M, Saraiva A, Dzurak A S

机构信息

Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, 2052, Australia.

Research and Prototype Foundry, The University of Sydney, Sydney, NSW, 2006, Australia.

出版信息

Nat Commun. 2020 Feb 11;11(1):797. doi: 10.1038/s41467-019-14053-w.

Abstract

Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imperfections in semiconductor materials disrupt this analogy, so real devices seldom display a systematic many-electron arrangement. We demonstrate here an electrostatically confined quantum dot that reveals a well defined shell structure. We observe four shells (31 electrons) with multiplicities given by spin and valley degrees of freedom. Various fillings containing a single valence electron-namely 1, 5, 13 and 25 electrons-are found to be potential qubits. An integrated micromagnet allows us to perform electrically-driven spin resonance (EDSR), leading to faster Rabi rotations and higher fidelity single qubit gates at higher shell states. We investigate the impact of orbital excitations on single qubits as a function of the dot deformation and exploit it for faster qubit control.

摘要

一旦元素的周期性特性被揭示出来,化学行为就可以根据原子的价态来理解。理想情况下,这种原理可以推广到量子点,并且量子计算仅仅通过控制基于量子点的量子比特的外层电子就可以进行。半导体材料中的缺陷破坏了这种类比,因此实际器件很少显示出系统的多电子排列。我们在此展示了一种静电限制量子点,它揭示了一种定义明确的壳层结构。我们观察到四个壳层(31个电子),其多重性由自旋和谷自由度给出。发现包含单个价电子的各种填充态,即1、5、13和25个电子,是潜在的量子比特。一个集成的微磁体使我们能够进行电驱动自旋共振(EDSR),从而在更高的壳层状态下实现更快的拉比旋转和更高保真度的单量子比特门。我们研究了轨道激发对单量子比特的影响,它是量子点变形的函数,并利用它来实现更快的量子比特控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaea/7012832/d3ea7fe8bfb1/41467_2019_14053_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验