Vahapoglu Ensar, Slack-Smith James P, Leon Ross C C, Lim Wee Han, Hudson Fay E, Day Tom, Tanttu Tuomo, Yang Chih Hwan, Laucht Arne, Dzurak Andrew S, Pla Jarryd J
School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia.
Sci Adv. 2021 Aug 13;7(33). doi: 10.1126/sciadv.abg9158. Print 2021 Aug.
Spin-based silicon quantum electronic circuits offer a scalable platform for quantum computation, combining the manufacturability of semiconductor devices with the long coherence times afforded by spins in silicon. Advancing from current few-qubit devices to silicon quantum processors with upward of a million qubits, as required for fault-tolerant operation, presents several unique challenges, one of the most demanding being the ability to deliver microwave signals for large-scale qubit control. Here, we demonstrate a potential solution to this problem by using a three-dimensional dielectric resonator to broadcast a global microwave signal across a quantum nanoelectronic circuit. Critically, this technique uses only a single microwave source and is capable of delivering control signals to millions of qubits simultaneously. We show that the global field can be used to perform spin resonance of single electrons confined in a silicon double quantum dot device, establishing the feasibility of this approach for scalable spin qubit control.
基于自旋的硅量子电子电路为量子计算提供了一个可扩展的平台,它将半导体器件的可制造性与硅中自旋所提供的长相干时间结合在一起。要从当前的少比特量子器件发展到具备容错操作所需的、拥有超过一百万个量子比特的硅量子处理器,面临着几个独特的挑战,其中最具挑战性的之一是能够为大规模量子比特控制提供微波信号。在此,我们展示了一个针对此问题的潜在解决方案,即使用三维介质谐振器在量子纳米电子电路中广播全局微波信号。至关重要的是,该技术仅使用单个微波源,并且能够同时向数百万个量子比特传递控制信号。我们表明,全局场可用于对限制在硅双量子点器件中的单个电子进行自旋共振,从而确立了这种方法用于可扩展自旋量子比特控制的可行性。