Suppr超能文献

中学阶段数学成绩跟踪及坚持性的遗传关联

Genetic associations with mathematics tracking and persistence in secondary school.

作者信息

Harden K Paige, Domingue Benjamin W, Belsky Daniel W, Boardman Jason D, Crosnoe Robert, Malanchini Margherita, Nivard Michel, Tucker-Drob Elliot M, Harris Kathleen Mullan

机构信息

1Department of Psychology and Population Research Center, University of Texas at Austin, Austin, TX USA.

2Graduate School of Education, Stanford University, Stanford, CA USA.

出版信息

NPJ Sci Learn. 2020 Feb 5;5:1. doi: 10.1038/s41539-020-0060-2. eCollection 2020.

Abstract

Maximizing the flow of students through the science, technology, engineering, and math (STEM) pipeline is important to promoting human capital development and reducing economic inequality. A critical juncture in the STEM pipeline is the highly cumulative sequence of secondary school math courses. Students from disadvantaged schools are less likely to complete advanced math courses. Here, we conduct an analysis of how the math pipeline differs across schools using student , which are DNA-based indicators of propensity to succeed in education. We integrated genetic and official school transcript data from over 3000 European-ancestry students from U.S. high schools. We used polygenic scores as a molecular tracer to understand how the flow of students through the high school math pipeline differs in socioeconomically advantaged versus disadvantaged schools. Students with higher education polygenic scores were tracked to more advanced math already at the beginning of high school and persisted in math for more years. Analyses using genetics as a molecular tracer revealed that the dynamics of the math pipeline differed by school advantage. Compared to disadvantaged schools, advantaged schools buffered students with low polygenic scores from dropping out of math. Across all schools, even students with exceptional polygenic scores (top 2%) were unlikely to take the most advanced math classes, suggesting substantial room for improvement in the development of potential STEM talent. These results link new molecular genetic discoveries to a common target of educational-policy reforms.

摘要

最大限度地增加通过科学、技术、工程和数学(STEM)人才培养渠道的学生数量,对于促进人力资本发展和减少经济不平等至关重要。STEM人才培养渠道中的一个关键节点是中学数学课程高度累积的序列。来自弱势学校的学生完成高等数学课程的可能性较小。在此,我们利用学生的基因数据(基于DNA的教育成功倾向指标),分析了不同学校的数学人才培养渠道有何差异。我们整合了来自美国高中3000多名欧洲裔学生的基因数据和官方学校成绩单数据。我们使用多基因分数作为分子追踪器,以了解在社会经济条件优越和弱势的学校中,学生通过高中数学人才培养渠道的情况有何不同。教育多基因分数较高的学生在高中开始时就被追踪到学习更高级的数学课程,并且在数学学习上持续的时间更长。使用基因作为分子追踪器的分析表明,数学人才培养渠道的动态因学校优势而异。与弱势学校相比,优势学校能保护多基因分数低的学生不放弃数学学习。在所有学校中,即使是多基因分数极高的学生(前2%)也不太可能参加最先进的数学课程,这表明在潜在STEM人才的培养方面仍有很大的改进空间。这些结果将新的分子遗传学发现与教育政策改革的一个共同目标联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed7/7002519/f1ddcaa6cfb9/41539_2020_60_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验