Suppr超能文献

线粒体氧化磷酸化调节致病性 Th17 细胞和调节性 T 细胞之间的命运决定。

Mitochondrial Oxidative Phosphorylation Regulates the Fate Decision between Pathogenic Th17 and Regulatory T Cells.

机构信息

Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

出版信息

Cell Rep. 2020 Feb 11;30(6):1898-1909.e4. doi: 10.1016/j.celrep.2020.01.022.

Abstract

Understanding metabolic pathways that regulate Th17 development is important to broaden therapeutic options for Th17-mediated autoimmunity. Here, we report a pivotal role of mitochondrial oxidative phosphorylation (OXPHOS) for lineage specification toward pathogenic Th17 differentiation. Th17 cells rapidly increase mitochondrial respiration during development, and this is necessary for metabolic reprogramming following T cell activation. Surprisingly, specific inhibition of mitochondrial ATP synthase ablates Th17 pathogenicity in a mouse model of autoimmunity by preventing Th17 pathogenic signature gene expression. Notably, cells activated under OXPHOS-inhibited Th17 conditions preferentially express Foxp3, rather than Th17 genes, and become suppressive Treg cells. Mechanistically, OXPHOS promotes the Th17 pioneer transcription factor, BATF, and facilitates T cell receptor (TCR) and mTOR signaling. Correspondingly, overexpression of BATF rescues Th17 development when ATP synthase activity is restricted. Together, our data reveal a regulatory role of mitochondrial OXPHOS in dictating the fate decision between Th17 and Treg cells by supporting early molecular events necessary for Th17 commitment.

摘要

了解调节 Th17 发育的代谢途径对于拓宽 Th17 介导的自身免疫的治疗选择很重要。在这里,我们报告了线粒体氧化磷酸化 (OXPHOS) 在向致病性 Th17 分化的谱系特化中起关键作用。Th17 细胞在发育过程中迅速增加线粒体呼吸,这对于 T 细胞激活后的代谢重编程是必要的。令人惊讶的是,在线粒体 ATP 合酶的特异性抑制下,通过阻止 Th17 致病性特征基因的表达,在自身免疫的小鼠模型中消除了 Th17 的致病性。值得注意的是,在 OXPHOS 抑制的 Th17 条件下激活的细胞优先表达 Foxp3,而不是 Th17 基因,并且成为具有抑制作用的 Treg 细胞。从机制上讲,OXPHOS 促进 Th17 先驱转录因子 BATF,并促进 T 细胞受体 (TCR) 和 mTOR 信号传导。相应地,当 ATP 合酶活性受到限制时,BATF 的过表达可挽救 Th17 的发育。总之,我们的数据揭示了线粒体 OXPHOS 在决定 Th17 和 Treg 细胞之间命运决定中的调节作用,通过支持 Th17 承诺所需的早期分子事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b08/9059282/4daa53741ef4/nihms-1560142-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验