Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States.
Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
ACS Appl Mater Interfaces. 2020 Mar 11;12(10):11884-11889. doi: 10.1021/acsami.9b15667. Epub 2020 Feb 25.
Hierarchical porous carbons (HPCs) hold great promise in energy-related applications owing to their excellent chemical stability and well-developed porous structures. Attention has been drawn toward developing new synthetic strategies and precursor materials that permit greater control over composition, size, morphology, and pore structure. There is a growing trend of employing metal-organic frameworks (MOFs) as HPC precursors as their highly customizable characteristics favor new HPC syntheses. In this article, we report a biomimetically grown bacterial-templated MOF synthesis where the bacteria not only facilitate the formation of MOF nanocrystals but also provide morphology and porosity control. The resultant HPCs show improved electrochemical capacity behavior compared to pristine MOF-derived HPCs. Considering the broad availability of bacteria and ease of their production, in addition to significantly improved MOF growth efficiency on bacterial templates, we believe that the bacterial-templated MOF is a promising strategy to produce a new generation of HPCs.
分层多孔碳 (HPC) 由于其优异的化学稳定性和发达的多孔结构,在能源相关应用中具有广阔的应用前景。人们已经开始关注开发新的合成策略和前驱体材料,以实现对组成、尺寸、形态和孔结构的更好控制。越来越多的人倾向于使用金属-有机骨架 (MOF) 作为 HPC 前体,因为它们高度可定制的特性有利于新的 HPC 合成。在本文中,我们报告了一种仿生细菌模板 MOF 合成,其中细菌不仅促进了 MOF 纳米晶体的形成,而且还提供了形态和孔隙控制。与原始 MOF 衍生的 HPC 相比,所得的 HPC 表现出改善的电化学容量行为。考虑到细菌的广泛可用性和其生产的简易性,以及细菌模板上 MOF 生长效率的显著提高,我们相信细菌模板 MOF 是生产新一代 HPC 的很有前途的策略。