Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
Laboratory for Multifunctional Ferroic Materials, Department of Materials, ETH Zürich, Zürich, Switzerland.
Nature. 2020 Feb;578(7794):256-260. doi: 10.1038/s41586-020-1980-y. Epub 2020 Feb 12.
Prussian blue analogues (PBAs) are a diverse family of microporous inorganic solids, known for their gas storage ability, metal-ion immobilization, proton conduction, and stimuli-dependent magnetic, electronic and optical properties. This family of materials includes the double-metal cyanide catalysts and the hexacyanoferrate/hexacyanomanganate battery materials. Central to the various physical properties of PBAs is their ability to reversibly transport mass, a process enabled by structural vacancies. Conventionally presumed to be random, vacancy arrangements are crucial because they control micropore-network characteristics, and hence the diffusivity and adsorption profiles. The long-standing obstacle to characterizing the vacancy networks of PBAs is the inaccessibility of single crystals. Here we report the growth of single crystals of various PBAs and the measurement and interpretation of their X-ray diffuse scattering patterns. We identify a diversity of non-random vacancy arrangements that is hidden from conventional crystallographic powder analysis. Moreover, we explain this unexpected phase complexity in terms of a simple microscopic model that is based on local rules of electroneutrality and centrosymmetry. The hidden phase boundaries that emerge demarcate vacancy-network polymorphs with very different micropore characteristics. Our results establish a foundation for correlated defect engineering in PBAs as a means of controlling storage capacity, anisotropy and transport efficiency.
普鲁士蓝类似物 (PBA) 是一类具有多种微孔无机固体,以其气体存储能力、金属离子固定、质子传导以及刺激响应的磁性、电子和光学性质而闻名。该材料家族包括双金属氰化物催化剂和亚铁氰化物/铁氰化物电池材料。PBA 各种物理性质的核心是其能够可逆地传输质量,这一过程是通过结构空位实现的。空位排列通常被认为是随机的,但它们对于控制微孔网络特性至关重要,从而控制扩散率和吸附分布。长期以来,对 PBA 空位网络进行特征描述的障碍是单晶的不可获得性。在这里,我们报告了各种 PBA 单晶的生长,以及对其 X 射线漫散射图谱的测量和解释。我们确定了多种非随机空位排列,这些排列在传统的晶体学粉末分析中是隐藏的。此外,我们根据基于局部电中性和中心对称规则的简单微观模型来解释这种出乎意料的相复杂性。出现的隐藏相界标志着具有非常不同微孔特性的空位网络多晶型物。我们的结果为 PBA 的相关缺陷工程奠定了基础,这是控制存储容量、各向异性和传输效率的一种手段。