Lyu Siwei, Simoncelli Eero P
Howard Hughes Medical Institute, and Center for Neuroscience, New York University.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008;2008:1-8. doi: 10.1109/CVPR.2008.4587821.
In this paper, we describe a nonlinear image representation based on divisive normalization that is designed to match the statistical properties of photographic images, as well as the perceptual sensitivity of biological visual systems. We decompose an image using a multi-scale oriented representation, and use Student's t as a model of the dependencies within local clusters of coefficients. We then show that normalization of each coefficient by the square root of a linear combination of the amplitudes of the coefficients in the cluster reduces statistical dependencies. We further show that the resulting divisive normalization transform is invertible and provide an efficient iterative inversion algorithm. Finally, we probe the statistical and perceptual advantages of this image representation by examining its robustness to added noise, and using it to enhance image contrast.
在本文中,我们描述了一种基于分裂归一化的非线性图像表示方法,该方法旨在匹配摄影图像的统计特性以及生物视觉系统的感知灵敏度。我们使用多尺度方向表示对图像进行分解,并使用学生t分布作为系数局部聚类内相关性的模型。然后我们表明,通过聚类中系数幅度的线性组合的平方根对每个系数进行归一化,可以减少统计相关性。我们进一步表明,所得的分裂归一化变换是可逆的,并提供了一种有效的迭代反演算法。最后,我们通过检查其对加性噪声的鲁棒性,并使用它来增强图像对比度,来探究这种图像表示方法的统计和感知优势。