Catta-Preta Rinaldo, Lindtner Susan, Ypsilanti Athena, Seban Nicolas, Price James D, Abnousi Armen, Su-Feher Linda, Wang Yurong, Cichewicz Karol, Boerma Sally A, Juric Ivan, Jones Ian R, Akiyama Jennifer A, Hu Ming, Shen Yin, Visel Axel, Pennacchio Len A, Dickel Diane E, Rubenstein John L R, Nord Alex S
Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA.
Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
Dev Cell. 2025 Jan 20;60(2):288-304.e6. doi: 10.1016/j.devcel.2024.10.004. Epub 2024 Oct 30.
Transcription factors (TFs) bind combinatorially to cis-regulatory elements, orchestrating transcriptional programs. Although studies of chromatin state and chromosomal interactions have demonstrated dynamic neurodevelopmental cis-regulatory landscapes, parallel understanding of TF interactions lags. To elucidate combinatorial TF binding driving mouse basal ganglia development, we integrated chromatin immunoprecipitation sequencing (ChIP-seq) for twelve TFs, H3K4me3-associated enhancer-promoter interactions, chromatin and gene expression data, and functional enhancer assays. We identified sets of putative regulatory elements with shared TF binding (TF-pRE modules) that orchestrate distinct processes of GABAergic neurogenesis and suppress other cell fates. The majority of pREs were bound by one or two TFs; however, a small proportion were extensively bound. These sequences had exceptional evolutionary conservation and motif density, complex chromosomal interactions, and activity as in vivo enhancers. Our results provide insights into the combinatorial TF-pRE interactions that activate and repress expression programs during telencephalon neurogenesis and demonstrate the value of TF binding toward modeling developmental transcriptional wiring.
转录因子(TFs)通过组合方式与顺式调控元件结合,协调转录程序。尽管对染色质状态和染色体相互作用的研究已经揭示了动态的神经发育顺式调控格局,但对TF相互作用的平行理解仍滞后。为了阐明驱动小鼠基底神经节发育的组合TF结合,我们整合了针对12种TF的染色质免疫沉淀测序(ChIP-seq)、与H3K4me3相关的增强子-启动子相互作用、染色质和基因表达数据以及功能性增强子分析。我们鉴定出了具有共享TF结合的假定调控元件集(TF-pRE模块),这些模块协调了GABA能神经发生的不同过程并抑制其他细胞命运。大多数pREs由一两种TF结合;然而,一小部分被广泛结合。这些序列具有异常的进化保守性和基序密度、复杂的染色体相互作用以及作为体内增强子的活性。我们的结果为在端脑神经发生过程中激活和抑制表达程序的组合TF-pRE相互作用提供了见解,并证明了TF结合在构建发育转录线路模型方面的价值。