Beckman Institute for Advanced Science and Technology, Urbana, USA.
Department of Bioengineering, Urbana, USA.
Sci Rep. 2020 Feb 13;10(1):2540. doi: 10.1038/s41598-020-59227-5.
Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson's correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12-15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.
神经元和脑区之间的信号传递提供了有关神经网络功能特性的信息,从而提供了信息传递。光学成像技术的进步和对获得的光学信号的统计分析产生了各种用于推断神经连接的指标,从而用于绘制信号相关性。然而,传统上仅得出一个系数来分类两个细胞之间的连接强度,而忽略了这样一个事实,即神经系统本质上是时变系统。为了克服这些限制,我们利用时变 Pearson 相关系数、尖峰排序、小波变换和钙瞬变的小波相干性,对在应用不同浓度谷氨酸后来自 GCaMP6s 小鼠的 DIV 12-15 海马神经元进行了分析。结果提供了对产生的发射模式、网络连接、信号方向性和网络特性的全面概述。这些指标共同提供了一种更全面、更稳健的方法来分析瞬态神经信号,并为未来的研究提供了跟踪不同刺激对网络特性的影响的方法。