Okinawa Institute of Science and Technology, Graduate University, Japan; ARAYA, Inc., Tokyo, Japan.
Nara Advanced Institute of Science and Technology, Japan.
Neural Netw. 2018 Jun;102:120-137. doi: 10.1016/j.neunet.2018.02.016. Epub 2018 Mar 10.
This article presents a review of computational methods for connectivity inference from neural activity data derived from multi-electrode recordings or fluorescence imaging. We first identify biophysical and technical challenges in connectivity inference along the data processing pipeline. We then review connectivity inference methods based on two major mathematical foundations, namely, descriptive model-free approaches and generative model-based approaches. We investigate representative studies in both categories and clarify which challenges have been addressed by which method. We further identify critical open issues and possible research directions.
本文对从多电极记录或荧光成像获得的神经活动数据进行连接推断的计算方法进行了综述。我们首先确定了沿着数据处理管道进行连接推断的生物物理和技术挑战。然后,我们根据两个主要的数学基础回顾了连接推断方法,即描述性无模型方法和生成模型方法。我们研究了这两个类别中的代表性研究,并阐明了哪种方法解决了哪些挑战。我们进一步确定了关键的未解决问题和可能的研究方向。