Richon Camille, Tagliabue Alessandro
School of Environmental Sciences University of Liverpool Liverpool UK.
Global Biogeochem Cycles. 2019 Dec;33(12):1594-1610. doi: 10.1029/2019GB006280. Epub 2019 Dec 9.
Copper (Cu) is an unusual micronutrient as it can limit primary production but can also become toxic for growth and cellular functioning under high concentrations. Cu also displays an atypical linear profile, which will modulate its availability to marine microbes across the ocean. Multiple chemical forms of Cu coexist in seawater as dissolved species and understanding the main processes shaping the Cu biogeochemical cycling is hampered by key knowledge gaps. For instance, the drivers of its specific linear profile in seawater are unknown, and the bioavailable form of Cu for marine phytoplankton is debated. Here we developed a global 3-D biogeochemical model of oceanic Cu within the NEMO/PISCES global model, which represents the global distribution of dissolved copper well. Using our model, we find that reversible scavenging of Cu by organic particles drives the dissolved Cu vertical profile and its distribution in the deep ocean. The low modeled inorganic copper (Cu') in the surface ocean means that Cu' cannot maintain phytoplankton cellular copper requirements within observed ranges. The global budget of oceanic Cu from our model suggests that its residence time may be shorter than previously estimated and provides a global perspective on Cu cycling and the main drivers of Cu biogeochemistry in different regions. Cu scavenging within particle microenvironments and uptake by denitrifying bacteria could be a significant component of Cu cycling in oxygen minimum zones.
铜(Cu)是一种特殊的微量营养素,因为它既能限制初级生产,又在高浓度时对生长和细胞功能产生毒性。铜还呈现出非典型的线性分布特征,这会调节其在全球海洋中对海洋微生物的可利用性。海水中多种化学形态的铜以溶解态共存,而关键知识空白阻碍了我们对塑造铜生物地球化学循环的主要过程的理解。例如,其在海水中特定线性分布特征的驱动因素尚不清楚,并且海洋浮游植物可利用的铜的生物可利用形态也存在争议。在此,我们在NEMO/PISCES全球模型中开发了一个全球三维海洋铜生物地球化学模型,该模型能很好地呈现溶解铜的全球分布。利用我们的模型,我们发现有机颗粒对铜的可逆清除作用驱动了溶解铜的垂直分布及其在深海中的分布。表层海洋中模拟的无机铜(Cu')含量较低,这意味着Cu'无法在观测范围内维持浮游植物细胞对铜的需求。我们模型得出的海洋铜全球收支表明,其停留时间可能比先前估计的要短,并为铜循环以及不同区域铜生物地球化学的主要驱动因素提供了全球视角。颗粒微环境中的铜清除作用以及反硝化细菌对铜的吸收可能是氧含量最低区域铜循环的重要组成部分。