Glass Jennifer B, Orphan Victoria J
Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA.
Front Microbiol. 2012 Feb 21;3:61. doi: 10.3389/fmicb.2012.00061. eCollection 2012.
Fluxes of greenhouse gases to the atmosphere are heavily influenced by microbiological activity. Microbial enzymes involved in the production and consumption of greenhouse gases often contain metal cofactors. While extensive research has examined the influence of Fe bioavailability on microbial CO(2) cycling, fewer studies have explored metal requirements for microbial production and consumption of the second- and third-most abundant greenhouse gases, methane (CH(4)), and nitrous oxide (N(2)O). Here we review the current state of biochemical, physiological, and environmental research on transition metal requirements for microbial CH(4) and N(2)O cycling. Methanogenic archaea require large amounts of Fe, Ni, and Co (and some Mo/W and Zn). Low bioavailability of Fe, Ni, and Co limits methanogenesis in pure and mixed cultures and environmental studies. Anaerobic methane oxidation by anaerobic methanotrophic archaea (ANME) likely occurs via reverse methanogenesis since ANME possess most of the enzymes in the methanogenic pathway. Aerobic CH(4) oxidation uses Cu or Fe for the first step depending on Cu availability, and additional Fe, Cu, and Mo for later steps. N(2)O production via classical anaerobic denitrification is primarily Fe-based, whereas aerobic pathways (nitrifier denitrification and archaeal ammonia oxidation) require Cu in addition to, or possibly in place of, Fe. Genes encoding the Cu-containing N(2)O reductase, the only known enzyme capable of microbial N(2)O conversion to N(2), have only been found in classical denitrifiers. Accumulation of N(2)O due to low Cu has been observed in pure cultures and a lake ecosystem, but not in marine systems. Future research is needed on metalloenzymes involved in the production of N(2)O by enrichment cultures of ammonia oxidizing archaea, biological mechanisms for scavenging scarce metals, and possible links between metal bioavailability and greenhouse gas fluxes in anaerobic environments where metals may be limiting due to sulfide-metal scavenging.
温室气体向大气中的排放受到微生物活动的严重影响。参与温室气体产生和消耗的微生物酶通常含有金属辅因子。虽然大量研究探讨了铁的生物有效性对微生物二氧化碳循环的影响,但较少有研究探索微生物产生和消耗第二和第三丰富的温室气体——甲烷(CH₄)和一氧化二氮(N₂O)所需的金属。在这里,我们综述了关于微生物CH₄和N₂O循环对过渡金属需求的生化、生理和环境研究的现状。产甲烷古菌需要大量的铁、镍和钴(以及一些钼/钨和锌)。铁、镍和钴的低生物有效性限制了纯培养物、混合培养物和环境研究中的甲烷生成。厌氧甲烷氧化古菌(ANME)进行的厌氧甲烷氧化可能通过逆向甲烷生成发生,因为ANME拥有甲烷生成途径中的大多数酶。有氧CH₄氧化第一步根据铜的可用性使用铜或铁,后续步骤还需要额外的铁、铜和钼。通过经典厌氧反硝化产生N₂O主要基于铁,而有氧途径(硝化反硝化和古菌氨氧化)除了铁之外还需要铜,或者可能用铜替代铁。编码含铜N₂O还原酶(唯一已知的能够将微生物N₂O转化为N₂的酶)的基因仅在经典反硝化菌中发现。在纯培养物和一个湖泊生态系统中观察到由于铜含量低导致的N₂O积累,但在海洋系统中未观察到。未来需要对参与氨氧化古菌富集培养物产生N₂O的金属酶、清除稀有金属的生物学机制以及在金属可能因硫化物 - 金属清除而受限的厌氧环境中金属生物有效性与温室气体通量之间的可能联系进行研究。