Suppr超能文献

基于消除动力学模拟数据的米氏方程参数的各种估计方法比较

Comparison of various estimation methods for the parameters of Michaelis-Menten equation based on elimination kinetic simulation data.

作者信息

Cho Yong-Soon, Lim Hyeong-Seok

机构信息

Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan, Seoul 05505, Republic of Korea.

出版信息

Transl Clin Pharmacol. 2018 Mar;26(1):39-47. doi: 10.12793/tcp.2018.26.1.39. Epub 2018 Mar 16.

Abstract

The Michaelis-Menten equation is one of the best-known models describing the enzyme kinetics of in vitro drug elimination experiments, and takes a form of equation relating reaction rate (V) to the substrate concentration ([S]) via the maximum reaction rate (V) and the Michaelis constant (K). The current study was conducted to compare the accuracy and precision of the parameter estimates in the Michaelis-Menten equation from various estimation methods using simulated data. One thousand replicates of simulated [S] over serial time data were generated using the results of a previous study, incorporating additive or combined error models as a source of random variables in the Monte-Carlo simulation using R. From each replicate of simulated data, V and K were estimated by five different methods, including traditional linearization methods and nonlinear ones without linearization using NONMEM. The relative accuracy and precision of the estimated parameters were compared by the median values and their 90% confidence intervals. Overall, V and K estimation by nonlinear methods (NM) provided the most accurate and precise results from the tested 5 estimation methods. The superiority of parameter estimation by NM was even more evident in the simulated data incorporating the combined error model. The current simulation study suggests that NMs using a program such as NONMEM provide more reliable and accurate parameter estimates of the Michaelis-Menten equation than traditional linearization methods in drug elimination kinetic experiments.

摘要

米氏方程是描述体外药物消除实验酶动力学最著名的模型之一,其形式为通过最大反应速率(V)和米氏常数(K)将反应速率(V)与底物浓度([S])联系起来的方程。本研究旨在使用模拟数据比较米氏方程中各种估计方法的参数估计的准确性和精密度。利用先前研究的结果生成了1000个连续时间数据的模拟[S]重复样本,在使用R进行的蒙特卡罗模拟中纳入加性或组合误差模型作为随机变量的来源。从每个模拟数据重复样本中,通过五种不同方法估计V和K,包括传统线性化方法和使用NONMEM的无线性化的非线性方法。通过中位数及其90%置信区间比较估计参数的相对准确性和精密度。总体而言,在测试的五种估计方法中,非线性方法(NM)对V和K的估计提供了最准确和精密的结果。在纳入组合误差模型的模拟数据中,NM进行参数估计的优越性更为明显。当前的模拟研究表明,在药物消除动力学实验中,使用诸如NONMEM之类程序的非线性方法比传统线性化方法能提供更可靠和准确的米氏方程参数估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验