Suppr超能文献

利用四元纳米复合材料制造纳米生物工程界面,用于高效和选择性电化学生物传感尿素。

Fabrication of Nanobioengineered Interfaces Utilizing Quaternary Nanocomposite for Highly Efficient and Selective Electrochemical Biosensing of Urea.

机构信息

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan.

出版信息

Langmuir. 2024 Oct 8;40(40):21052-21066. doi: 10.1021/acs.langmuir.4c02457. Epub 2024 Sep 2.

Abstract

Nanobioengineered interfaces have gained attention owing to their small size and high surface area-to-volume ratio for utilization as a platform for highly selective and sensitive biosensing applications owing to the integration of biological molecules with engineered nanomaterials/nanocomposites. In this work, a novel Ag-complex, [(PPh)Ag(SCOf)]-based quaternary Ag-S-Zn-O nanocomposites (NCs), was synthesized through an environmentally-friendly process. The results revealed the formation of the NCs with an average crystallite size and particle size of 36.08 and 40.22 nm, respectively. In addition, this is the first study to utilize such NCs synthesized via a single-source precursor method, offering enhanced sensor performance due to their unique structural properties. Further, these NCs were used to fabricate a urease (Ur)/Ag-S-Zn-O NCs/ITO nanobioengineered electrode for precise and sensitive electrochemical biosensing of urea. The interfacial kinetic studies revealed quasi-reversible processes with high electron transfer rates and linear current responses, indicating efficient reaction dynamics. A high diffusion coefficient and low surface concentration suggested a fast diffusion-controlled process, affirming the electrode's potential for rapid and sensitive urea detection. The biosensor demonstrated notable sensing properties such as high sensitivity (12.56 μA mM cm) and a low detection limit (0.54 mM). The fabricated bioelectrode was highly selective and reproducible and demonstrated stability for up to 60 days. These results validate the potential of this nanobioengineered interface for next-generation biosensing applications, paving the way for advanced point-of-care diagnostics and real-time health monitoring.

摘要

纳米生物工程界面因其小尺寸和高表面积与体积比而受到关注,可作为平台用于高度选择性和灵敏的生物传感应用,因为生物分子与工程纳米材料/纳米复合材料的集成。在这项工作中,通过环保工艺合成了一种新型 Ag 配合物[(PPh)Ag(SCOf)]为基础的四元 Ag-S-Zn-O 纳米复合材料(NCs)。结果表明,NCs 的形成具有平均结晶度和粒径分别为 36.08nm 和 40.22nm。此外,这是首次利用通过单源前体方法合成的此类 NCs,由于其独特的结构特性,提供了增强的传感器性能。此外,这些 NCs 被用于制造尿酶(Ur)/Ag-S-Zn-O NCs/ITO 纳米生物工程电极,用于精确和灵敏的电化学生物传感尿素。界面动力学研究表明具有高电子转移速率和线性电流响应的准可逆过程,表明反应动力学高效。高扩散系数和低表面浓度表明快速扩散控制过程,证实了电极快速灵敏检测尿素的潜力。该生物传感器表现出显著的传感特性,例如高灵敏度(12.56μA mM cm)和低检测限(0.54mM)。所制造的生物电极具有高度选择性和重现性,并在长达 60 天的时间内表现出稳定性。这些结果验证了这种纳米生物工程界面在下一代生物传感应用中的潜力,为先进的即时诊断和实时健康监测铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ce7/11465734/57491e85efe0/la4c02457_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验