Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, 8010, Austria.
Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz, 8010, Austria.
Adv Sci (Weinh). 2022 Apr;9(10):e2105547. doi: 10.1002/advs.202105547. Epub 2022 Feb 1.
Autonomous flow reactors are becoming increasingly utilized in the synthesis of organic compounds, yet the complexity of the chemical reactions and analytical methods remains limited. The development of a modular platform which uses rapid flow NMR and FTIR measurements, combined with chemometric modeling, is presented for efficient and timely analysis of reaction outcomes. This platform is tested with a four variable single-step reaction (nucleophilic aromatic substitution), to determine the most effective optimization methodology. The self-optimization approach with minimal background knowledge proves to provide the optimal reaction parameters within the shortest operational time. The chosen approach is then applied to a seven variable two-step optimization problem (imine formation and cyclization), for the synthesis of the active pharmaceutical ingredient edaravone. Despite the exponentially increased complexity of this optimization problem, the platform achieves excellent results in a relatively small number of iterations, leading to >95% solution yield of the intermediate and up to 5.42 kg L h space-time yield for this pharmaceutically relevant product.
自动流反应器在有机化合物的合成中越来越多地被应用,然而化学反应和分析方法的复杂性仍然有限。本文提出了一种使用快速流动 NMR 和 FTIR 测量以及化学计量建模的模块化平台,用于对反应结果进行高效和及时的分析。该平台使用四变量单步反应(亲核芳香取代)进行了测试,以确定最有效的优化方法。具有最小背景知识的自优化方法证明可以在最短的操作时间内提供最佳的反应参数。然后,该方法被应用于七变量两步优化问题(亚胺形成和环化),用于合成活性药物成分依达拉奉。尽管该优化问题的复杂性呈指数级增加,但该平台在相对较少的迭代次数内取得了优异的结果,导致中间体的收率超过 95%,对于这种具有药物相关性的产品,时空产率高达 5.42kg L h。