Suppr超能文献

通过分析性能模型理解细胞水平脑组织模拟的计算成本。

Understanding Computational Costs of Cellular-Level Brain Tissue Simulations Through Analytical Performance Models.

机构信息

Blue Brain Project, Brain Mind Institute, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, 1202, Geneva, Switzerland.

出版信息

Neuroinformatics. 2020 Jun;18(3):407-428. doi: 10.1007/s12021-019-09451-w.

Abstract

Computational modeling and simulation have become essential tools in the quest to better understand the brain's makeup and to decipher the causal interrelations of its components. The breadth of biochemical and biophysical processes and structures in the brain has led to the development of a large variety of model abstractions and specialized tools, often times requiring high performance computing resources for their timely execution. What has been missing so far was an in-depth analysis of the complexity of the computational kernels, hindering a systematic approach to identifying bottlenecks of algorithms and hardware. If whole brain models are to be achieved on emerging computer generations, models and simulation engines will have to be carefully co-designed for the intrinsic hardware tradeoffs. For the first time, we present a systematic exploration based on analytic performance modeling. We base our analysis on three in silico models, chosen as representative examples of the most widely employed modeling abstractions: current-based point neurons, conductance-based point neurons and conductance-based detailed neurons. We identify that the synaptic modeling formalism, i.e. current or conductance-based representation, and not the level of morphological detail, is the most significant factor in determining the properties of memory bandwidth saturation and shared-memory scaling of in silico models. Even though general purpose computing has, until now, largely been able to deliver high performance, we find that for all types of abstractions, network latency and memory bandwidth will become severe bottlenecks as the number of neurons to be simulated grows. By adapting and extending a performance modeling approach, we deliver a first characterization of the performance landscape of brain tissue simulations, allowing us to pinpoint current bottlenecks for state-of-the-art in silico models, and make projections for future hardware and software requirements.

摘要

计算建模和模拟已成为深入了解大脑结构和解析其组成部分因果关系的重要工具。大脑中的生化和生物物理过程和结构的广泛性导致了大量模型抽象和专业工具的发展,这些工具通常需要高性能计算资源才能及时执行。到目前为止,还缺乏对计算内核复杂性的深入分析,这阻碍了系统地确定算法和硬件瓶颈的方法。如果要在新兴的计算机代上实现全脑模型,模型和模拟引擎将不得不为内在的硬件权衡进行精心的协同设计。我们首次基于分析性能建模进行了系统探索。我们的分析基于三个计算机模型,它们被选为最广泛使用的建模抽象的代表示例:基于电流的点神经元、基于电导的点神经元和基于电导的详细神经元。我们确定了突触建模形式主义,即基于电流或电导的表示形式,而不是形态细节的水平,是决定记忆带宽饱和和计算机模型共享内存扩展的属性的最重要因素。尽管通用计算迄今为止在很大程度上能够提供高性能,但我们发现,对于所有类型的抽象,随着要模拟的神经元数量的增加,网络延迟和内存带宽将成为严重的瓶颈。通过调整和扩展性能建模方法,我们对脑组织模拟的性能景观进行了首次特征描述,使我们能够确定最先进的计算机模型中的当前瓶颈,并对未来的硬件和软件需求进行预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/177c/7338826/36f4b29cb815/12021_2019_9451_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验