文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.

作者信息

Hagen Espen, Dahmen David, Stavrinou Maria L, Lindén Henrik, Tetzlaff Tom, van Albada Sacha J, Grün Sonja, Diesmann Markus, Einevoll Gaute T

机构信息

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, 52425 Jülich, Germany.

Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway.

出版信息

Cereb Cortex. 2016 Dec;26(12):4461-4496. doi: 10.1093/cercor/bhw237. Epub 2016 Oct 20.


DOI:10.1093/cercor/bhw237
PMID:27797828
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6193674/
Abstract

With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/02b2bd3c9f1c/bhw237f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/5a0938f6e12c/bhw237f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/b2123e1ed030/bhw237f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/1019344eaee8/bhw237f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/72e9d41063a3/bhw237f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/23ccd584f6e7/bhw237f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/040e3b4ca96a/bhw237f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/296fe24cc74c/bhw237f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/b274f8dc7816/bhw237f08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/5a5e47a704ee/bhw237f09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/aca3bffd7f11/bhw237f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/93e7b828a62a/bhw237f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/b115ba7d5137/bhw237f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/02b2bd3c9f1c/bhw237f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/5a0938f6e12c/bhw237f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/b2123e1ed030/bhw237f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/1019344eaee8/bhw237f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/72e9d41063a3/bhw237f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/23ccd584f6e7/bhw237f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/040e3b4ca96a/bhw237f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/296fe24cc74c/bhw237f07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/b274f8dc7816/bhw237f08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/5a5e47a704ee/bhw237f09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/aca3bffd7f11/bhw237f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/93e7b828a62a/bhw237f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/b115ba7d5137/bhw237f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe6/6193674/02b2bd3c9f1c/bhw237f13.jpg

相似文献

[1]
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.

Cereb Cortex. 2016-12

[2]
h-Type Membrane Current Shapes the Local Field Potential from Populations of Pyramidal Neurons.

J Neurosci. 2018-6-6

[3]
Focal Local Field Potential Signature of the Single-Axon Monosynaptic Thalamocortical Connection.

J Neurosci. 2017-5-17

[4]
Modeling the spatial reach of the LFP.

Neuron. 2011-12-8

[5]
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

PLoS Comput Biol. 2015-12-14

[6]
Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex.

Sci Rep. 2017-1-11

[7]
Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0.

Front Neuroinform. 2018-12-18

[8]
Intrinsic dendritic filtering gives low-pass power spectra of local field potentials.

J Comput Neurosci. 2010-12

[9]
Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim.

Front Comput Neurosci. 2016-6-28

[10]
Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

J Neurophysiol. 2012-8-15

引用本文的文献

[1]
A Python toolbox for neural circuit parameter inference.

NPJ Syst Biol Appl. 2025-5-9

[2]
On the validity of electric brain signal predictions based on population firing rates.

PLoS Comput Biol. 2025-4-14

[3]
Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis.

PLoS Comput Biol. 2024-12-12

[4]
Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space.

Cereb Cortex. 2024-10-3

[5]
Multitask learning of a biophysically-detailed neuron model.

PLoS Comput Biol. 2024-7

[6]
Neurobiological Causal Models of Language Processing.

Neurobiol Lang (Camb). 2024-4-1

[7]
Multiscale co-simulation design pattern for neuroscience applications.

Front Neuroinform. 2024-2-12

[8]
A neurophysiological basis for aperiodic EEG and the background spectral trend.

Nat Commun. 2024-2-19

[9]
Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis.

bioRxiv. 2024-1-16

[10]
Metamodelling of a two-population spiking neural network.

PLoS Comput Biol. 2023-11

本文引用的文献

[1]
Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex.

Sci Rep. 2017-1-11

[2]
Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit.

PLoS Comput Biol. 2016-10-13

[3]
Active subthreshold dendritic conductances shape the local field potential.

J Physiol. 2016-7-1

[4]
Propagation of spontaneous slow-wave activity across columns and layers of the adult rat barrel cortex in vivo.

Brain Struct Funct. 2016-12

[5]
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

PLoS Comput Biol. 2015-12-14

[6]
Modulated escape from a metastable state driven by colored noise.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015

[7]
Principles of connectivity among morphologically defined cell types in adult neocortex.

Science. 2015-11-27

[8]
An algorithm to predict the connectome of neural microcircuits.

Front Comput Neurosci. 2015-10-8

[9]
A Sparse Reformulation of the Green's Function Formalism Allows Efficient Simulations of Morphological Neuron Models.

Neural Comput. 2015-12

[10]
Reconstruction and Simulation of Neocortical Microcircuitry.

Cell. 2015-10-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索