Hagen Espen, Dahmen David, Stavrinou Maria L, Lindén Henrik, Tetzlaff Tom, van Albada Sacha J, Grün Sonja, Diesmann Markus, Einevoll Gaute T
Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, 52425 Jülich, Germany.
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway.
Cereb Cortex. 2016 Dec;26(12):4461-4496. doi: 10.1093/cercor/bhw237. Epub 2016 Oct 20.
With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail.
随着多电极记录技术的迅速发展,局部场电位(LFP)在研究和临床应用中再次成为衡量神经元活动的常用指标。要正确理解LFP,需要结合记录电极附近神经元的解剖学和电生理特征以及来自整个网络的突触输入进行详细的数学建模。在此,我们提出一种混合建模方案,将高效的点神经元网络模型与真实神经元产生LFP的生物物理原理相结合。LFP预测依赖于具有层特异性突触连接的网络等效多室神经元模型群体,可与任意数量的点神经元网络群体一起使用,并能完全分离模拟的网络动力学和LFP。我们将该方案应用于一个约1平方毫米的初级视觉皮层斑块的全尺度皮层网络模型,预测不同网络状态下的层状LFP,评估不同层状群体对LFP的相对贡献,并研究输入相关性和神经元密度对LFP的影响。该混合方案的通用性及其在hybridLFPy中的公开实现,为从其他更大的点神经元网络模型进行LFP预测以及在当前应用中添加更多生物学细节的扩展奠定了基础。