Suppr超能文献

可扩展的数字神经形态架构,用于具有多腔神经元的大规模生物物理意义神经网络。

Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):148-162. doi: 10.1109/TNNLS.2019.2899936. Epub 2019 Mar 18.

Abstract

Multicompartment emulation is an essential step to enhance the biological realism of neuromorphic systems and to further understand the computational power of neurons. In this paper, we present a hardware efficient, scalable, and real-time computing strategy for the implementation of large-scale biologically meaningful neural networks with one million multi-compartment neurons (CMNs). The hardware platform uses four Altera Stratix III field-programmable gate arrays, and both the cellular and the network levels are considered, which provides an efficient implementation of a large-scale spiking neural network with biophysically plausible dynamics. At the cellular level, a cost-efficient multi-CMN model is presented, which can reproduce the detailed neuronal dynamics with representative neuronal morphology. A set of efficient neuromorphic techniques for single-CMN implementation are presented with all the hardware cost of memory and multiplier resources removed and with hardware performance of computational speed enhanced by 56.59% in comparison with the classical digital implementation method. At the network level, a scalable network-on-chip (NoC) architecture is proposed with a novel routing algorithm to enhance the NoC performance including throughput and computational latency, leading to higher computational efficiency and capability in comparison with state-of-the-art projects. The experimental results demonstrate that the proposed work can provide an efficient model and architecture for large-scale biologically meaningful networks, while the hardware synthesis results demonstrate low area utilization and high computational speed that supports the scalability of the approach.

摘要

多 compartment 仿真对于增强神经形态系统的生物学真实性并进一步理解神经元的计算能力至关重要。在本文中,我们提出了一种硬件高效、可扩展和实时计算策略,用于实现具有一百万个多 compartment 神经元(CMN)的大规模具有生物学意义的神经网络。硬件平台使用四个 Altera Stratix III 现场可编程门阵列,同时考虑了细胞和网络两个层面,为具有生物逼真动力学的大规模尖峰神经网络提供了高效的实现。在细胞层面上,提出了一种具有成本效益的多 CMN 模型,它可以用代表性神经元形态来再现详细的神经元动力学。提出了一组用于单 CMN 实现的高效神经形态技术,去除了所有内存和乘法器资源的硬件成本,并通过 56.59%的硬件性能提高了计算速度,与经典的数字实现方法相比。在网络层面上,提出了一种可扩展的片上网络(NoC)架构,采用新颖的路由算法来提高 NoC 的性能,包括吞吐量和计算延迟,与最新项目相比,这可提高更高的计算效率和能力。实验结果表明,所提出的工作可以为大规模具有生物学意义的网络提供有效的模型和架构,而硬件综合结果表明,低面积利用率和高计算速度支持该方法的可扩展性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验