Japaridze Aleksandre, Yang Wayne, Dekker Cees, Nasser William, Muskhelishvili Georgi
Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France.
iScience. 2021 Apr 20;24(5):102408. doi: 10.1016/j.isci.2021.102408. eCollection 2021 May 21.
Nucleoid-associated proteins (NAPs) are a class of highly abundant DNA-binding proteins in bacteria and archaea. While both the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding and stabilizing higher-order nucleoprotein complexes in the bacterial chromosome. Here, we use atomic force microscopy and solid-state nanopores to investigate long-range nucleoprotein structures formed by the binding of two major NAPs, FIS and H-NS, to DNA molecules with distinct binding site arrangements. We find that spatial organization of the protein binding sites can govern the higher-order architecture of the nucleoprotein complexes. Based on sequence arrangement the complexes differed in their global shape and compaction as well as the extent of FIS and H-NS binding. Our observations highlight the important role the DNA sequence plays in driving structural differentiation within the bacterial chromosome.
类核相关蛋白(NAPs)是细菌和古细菌中一类高度丰富的DNA结合蛋白。虽然NAPs的组成和相对丰度在细菌生长周期中都会发生变化,但令人惊讶的是,对于它们在细菌染色体中相互结合并稳定高阶核蛋白复合物方面的相互作用却知之甚少。在这里,我们使用原子力显微镜和固态纳米孔来研究由两种主要NAPs(FIS和H-NS)与具有不同结合位点排列的DNA分子结合形成的远程核蛋白结构。我们发现蛋白质结合位点的空间组织可以控制核蛋白复合物的高阶结构。基于序列排列,这些复合物在整体形状、压缩程度以及FIS和H-NS的结合程度上存在差异。我们的观察结果突出了DNA序列在驱动细菌染色体内结构分化中所起的重要作用。