Xu J, Bobin J, de Vismes Ott A, Bobin C
IRSN/LMRE, Rue du Belvédère, 91400, Orsay, France.
CEA, IRFU/DEDIP/CosmoStat, 91191, Gif-sur-Yvette Cedex, France.
Appl Radiat Isot. 2020 Feb;156:108903. doi: 10.1016/j.apradiso.2019.108903. Epub 2019 Sep 26.
This paper presents a sparse spectral unmixing algorithm for activity estimation of radionuclides in γ-ray spectrometry. The spectral unmixing method aims to decompose a measured spectrum into spectral signatures of radionuclides, which is sensitive to the choice of the spectral signatures. The sparsity of the solution is imposed to identify the active radionuclides. Experimental results on simulated and real spectra show that the proposed method yields significant improvement for estimating radioactivity at low statistics.
本文提出了一种用于γ射线能谱中放射性核素活度估计的稀疏光谱解混算法。光谱解混方法旨在将测量光谱分解为放射性核素的光谱特征,这对光谱特征的选择很敏感。通过施加解的稀疏性来识别活性放射性核素。在模拟光谱和真实光谱上的实验结果表明,所提出的方法在低统计量下估计放射性活度方面有显著改进。