Suppr超能文献

利用稀疏和低秩泊松回归分解生物荧光图像数据

Unmixing Biological Fluorescence Image Data with Sparse and Low-Rank Poisson Regression.

作者信息

Wang Ruogu, Lemus Alex A, Henneberry Colin M, Ying Yiming, Feng Yunlong, Valm Alex M

机构信息

Department of Mathematics and Statistics, University at Albany, SUNY, Albany, NY 12222, USA.

Department of Biology, University at Albany, SUNY, Albany, NY 12222, USA.

出版信息

bioRxiv. 2023 Jan 18:2023.01.06.523044. doi: 10.1101/2023.01.06.523044.

Abstract

Multispectral biological fluorescence microscopy has enabled the identification of multiple targets in complex samples. The accuracy in the unmixing result degrades (1) as the number of fluorophores used in any experiment increases and (2) as the signal-to-noise ratio in the recorded images decreases. Further, the availability of prior knowledge regarding the expected spatial distributions of fluorophores in images of labeled cells provides an opportunity to improve the accuracy of fluorophore identification and abundance. We propose a regularized sparse and low-rank Poisson unmixing approach (SL-PRU) to deconvolve spectral images labeled with highly overlapping fluorophores which are recorded in low signal-to-noise regimes. Firstly, SL-PRU implements multi-penalty terms when pursuing sparseness and spatial correlation of the resulting abundances in small neighborhoods simultaneously. Secondly, SL-PRU makes use of Poisson regression for unmixing instead of least squares regression to better estimate photon abundance. Thirdly, we propose a method to tune the SL-PRU parameters involved in the unmixing procedure in the absence of knowledge of the ground truth abundance information in a recorded image. By validating on simulated and real-world images, we show that our proposed method leads to improved accuracy in unmixing fluorophores with highly overlapping spectra.

摘要

多光谱生物荧光显微镜技术能够识别复杂样本中的多个目标。解混结果的准确性会下降:(1)随着任何实验中使用的荧光团数量增加;(2)随着记录图像中的信噪比降低。此外,关于标记细胞图像中荧光团预期空间分布的先验知识的可用性为提高荧光团识别的准确性和丰度提供了机会。我们提出了一种正则化的稀疏和低秩泊松解混方法(SL-PRU),用于对在低信噪比条件下记录的、用高度重叠荧光团标记的光谱图像进行去卷积。首先,SL-PRU在同时追求所得丰度在小邻域内的稀疏性和空间相关性时,实现多惩罚项。其次,SL-PRU利用泊松回归进行解混,而不是最小二乘回归,以更好地估计光子丰度。第三,我们提出了一种方法,在没有记录图像的真实丰度信息的情况下,调整解混过程中涉及的SL-PRU参数。通过对模拟图像和真实世界图像的验证,我们表明我们提出的方法在解混具有高度重叠光谱的荧光团时,提高了准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c099/9882077/7dfe4f15271e/nihpp-2023.01.06.523044v3-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验