Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Lexington VA Healthcare System, Lexington, KY 40502, USA.
Exp Neurol. 2020 May;327:113243. doi: 10.1016/j.expneurol.2020.113243. Epub 2020 Feb 10.
Mitochondrial dysfunction is a pivotal event in many neurodegenerative disease states including traumatic brain injury (TBI) and spinal cord injury (SCI). One possible mechanism driving mitochondrial dysfunction is glutamate excitotoxicity leading to Ca-overload in neuronal or glial mitochondria. Therapies that reduce calcium overload and enhance bioenergetics have been shown to improve neurological outcomes. Pioglitazone, an FDA approved compound, has shown neuroprotective properties following TBI and SCI, but the underlying mechanism(s) are unknown. We hypothesized that the interaction between pioglitazone and a novel mitochondrial protein called mitoNEET was the basis for neuroprotection following CNS injury. We discovered that mitoNEET is an important mediator of Ca-mediated mitochondrial dysfunction and show that binding mitoNEET with pioglitazone can prevent Ca-induced dysfunction. By utilizing wild-type (WT) and mitoNEET null mice, we show that pioglitazone mitigates mitochondrial dysfunction and provides neuroprotection in WT mice, though produces no restorative effects in mitoNEET null mice. We also show that NL-1, a novel mitoNEET ligand, is neuroprotective following TBI in both mice and rats. These results support the crucial role of mitoNEET for mitochondrial bioenergetics, its importance in the neuropathological sequelae of TBI and the necessity of mitoNEET for pioglitazone-mediated neuroprotection. Since mitochondrial dysfunction is a pathobiological complication seen in other diseases such as diabetes, motor neuron disease and cancer, targeting mitoNEET may provide a novel mitoceutical target and therapeutic intervention for diseases that expand beyond TBI.
线粒体功能障碍是许多神经退行性疾病状态的关键事件,包括创伤性脑损伤 (TBI) 和脊髓损伤 (SCI)。导致神经元或神经胶质线粒体钙超载的谷氨酸兴奋性毒性是驱动线粒体功能障碍的一种可能机制。已经证明,减少钙超载和增强生物能量的疗法可以改善神经功能结局。吡格列酮是一种已获 FDA 批准的化合物,在 TBI 和 SCI 后显示出神经保护作用,但潜在机制尚不清楚。我们假设吡格列酮与一种名为 mitoNEET 的新型线粒体蛋白之间的相互作用是中枢神经系统损伤后神经保护的基础。我们发现 mitoNEET 是 Ca 介导的线粒体功能障碍的重要调节剂,并表明 mitoNEET 与吡格列酮结合可以防止 Ca 诱导的功能障碍。通过利用野生型 (WT) 和 mitoNEET 敲除小鼠,我们表明吡格列酮可减轻 WT 小鼠的线粒体功能障碍并提供神经保护,但在 mitoNEET 敲除小鼠中没有恢复作用。我们还表明,NL-1,一种新型的 mitoNEET 配体,在 TBI 后对小鼠和大鼠均具有神经保护作用。这些结果支持 mitoNEET 对线粒体生物能量学的关键作用,其在 TBI 神经病理学后果中的重要性以及 mitoNEET 对吡格列酮介导的神经保护的必要性。由于线粒体功能障碍是糖尿病、运动神经元疾病和癌症等其他疾病中出现的病理生物学并发症,因此靶向 mitoNEET 可能为超越 TBI 的疾病提供一种新型的线粒体治疗靶点和治疗干预措施。