Parker R A, Rothenberg R B
Department of Preventive Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232.
Stat Med. 1988 Oct;7(10):1031-43. doi: 10.1002/sim.4780071005.
When many statistical tests are performed simultaneously, the overall chance of a type I error (incorrect rejection of a true null hypothesis) can substantially exceed the nominal error rate used in each individual test. Numerous techniques exist to adjust results of individual tests to control this problem. In general, these techniques apply a more stringent criterion of statistical significance (a smaller P-value) to each individual test than normally needed to maintain the experimentwise type I error. With an analysis that seeks to identify results for further research, however, such a conservative technique may not be appropriate. We present a new approach that uses a mixture of several distributions to model the set of P-values or of test statistics. One component models the results consistent with a failure to reject the null hypothesis, while the other distribution(s) in the mixture represent results inconsistent with the null hypothesis. These latter results may not achieve statistical significance based on a conventional P-value. We illustrate the use of the method on national mortality data and on several data sets analysed previously.
当同时进行多个统计检验时,I 型错误(错误地拒绝真实的原假设)的总体概率可能会大幅超过每个单独检验中使用的名义错误率。存在多种技术可用于调整单个检验的结果以控制此问题。一般来说,这些技术对每个单独检验应用比维持实验性 I 型错误通常所需更严格的统计显著性标准(更小的 P 值)。然而,对于旨在识别进一步研究结果的分析而言,这样一种保守技术可能并不合适。我们提出一种新方法,该方法使用几种分布的混合来对 P 值集或检验统计量集进行建模。一个成分对与未能拒绝原假设一致的结果进行建模,而混合中的其他分布代表与原假设不一致的结果。基于传统的 P 值,这些后者的结果可能未达到统计显著性。我们通过国家死亡率数据以及之前分析过的几个数据集来说明该方法的使用。