Department of Physics, University of California San Diego, La Jolla, California.
Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California.
Biophys J. 2020 Mar 24;118(6):1357-1369. doi: 10.1016/j.bpj.2020.01.024. Epub 2020 Jan 29.
In contrast to the canonical picture of transport by direct attachment to motor proteins, recent evidence shows that a number of intracellular "cargos" navigate the cytoplasm by hitchhiking on motor-driven "carrier" organelles. We describe a quantitative model of intracellular cargo transport via hitchhiking, examining the efficiency of hitchhiking initiation as a function of geometric and mechanical parameters. We focus specifically on the parameter regime relevant to the hitchhiking motion of peroxisome organelles in fungal hyphae. Our work predicts the dependence of transport initiation rates on the distribution of cytoskeletal tracks and carrier organelles, as well as the number, length, and flexibility of the linker proteins that mediate contact between the carrier and the hitchhiking cargo. Furthermore, we demonstrate that attaching organelles to microtubules can result in a substantial enhancement of the hitchhiking initiation rate in tubular geometries such as those found in fungal hyphae. This enhancement is expected to increase the overall transport rate of hitchhiking organelles and lead to greater efficiency in organelle dispersion. Our results leverage a quantitative physical model to highlight the importance of organelle encounter dynamics in noncanonical intracellular transport.
与直接附着在运动蛋白上的经典运输模式相反,最近的证据表明,许多细胞内“货物”通过搭乘马达驱动的“载体”细胞器在细胞质中航行。我们描述了一种通过搭便车进行细胞内货物运输的定量模型,研究了搭便车起始的效率作为几何和机械参数的函数。我们特别关注与真菌菌丝中过氧化物酶体细胞器的搭便车运动相关的参数范围。我们的工作预测了运输起始率对细胞骨架轨道和载体细胞器的分布以及介导载体与搭便车货物之间接触的连接蛋白的数量、长度和灵活性的依赖性。此外,我们证明将细胞器附着到微管上可以在真菌菌丝中发现的管状结构中导致搭便车起始率的大幅提高。这种增强预计会增加搭便车细胞器的整体运输速率,并提高细胞器分散的效率。我们的结果利用定量物理模型强调了细胞器相遇动力学在非经典细胞内运输中的重要性。