Suppr超能文献

ShapeMetrics:一个用于 3D 细胞分割和空间组织分析的用户友好型流程。

ShapeMetrics: A userfriendly pipeline for 3D cell segmentation and spatial tissue analysis.

机构信息

Department of Biochemistry and Developmental Biology, Biomedicum, University of Helsinki, Finland.

Department of Biochemistry and Developmental Biology, Biomedicum, University of Helsinki, Finland; National Institute of Dental and Craniofacial Research, National Institutes of Health, Neural Crest Development and Disease Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.

出版信息

Dev Biol. 2020 Jun 1;462(1):7-19. doi: 10.1016/j.ydbio.2020.02.003. Epub 2020 Feb 14.

Abstract

The demand for single-cell level data is constantly increasing within life sciences. In order to meet this demand, robust cell segmentation methods that can tackle challenging in vivo tissues with complex morphology are required. However, currently available cell segmentation and volumetric analysis methods perform poorly on 3D images. Here, we generated ShapeMetrics, a MATLAB-based script that segments cells in 3D and, by performing unbiased clustering using a heatmap, separates the cells into subgroups according to their volumetric and morphological differences. The cells can be accurately segregated according to different biologically meaningful features such as cell ellipticity, longest axis, cell elongation, or the ratio between cell volume and surface area. Our machine learning based script enables dissection of a large amount of novel data from microscope images in addition to the traditional information based on fluorescent biomarkers. Furthermore, the cells in different subgroups can be spatially mapped back to their original locations in the tissue image to help elucidate their roles in their respective morphological contexts. In order to facilitate the transition from bulk analysis to single-cell level accuracy, we emphasize the user-friendliness of our method by providing detailed step-by-step instructions through the pipeline hence aiming to reach users with less experience in computational biology.

摘要

生命科学领域对单细胞水平数据的需求不断增加。为了满足这一需求,需要开发能够处理具有复杂形态的挑战性体内组织的稳健细胞分割方法。然而,目前可用的细胞分割和体积分析方法在处理 3D 图像时表现不佳。在这里,我们生成了基于 MATLAB 的脚本 ShapeMetrics,该脚本可对 3D 中的细胞进行分割,并通过使用热图执行无偏聚类,根据细胞的体积和形态差异将细胞分成亚组。可以根据不同的生物学意义特征(例如细胞的椭圆度、最长轴、细胞伸长或细胞体积与表面积之比)准确地对细胞进行分割。我们的基于机器学习的脚本除了基于荧光生物标志物的传统信息外,还能够从显微镜图像中解析大量新数据。此外,可以将不同亚组中的细胞空间映射回组织图像中的原始位置,以帮助阐明它们在各自形态背景中的作用。为了促进从批量分析到单细胞水平精度的转变,我们通过提供详细的分步说明来强调我们方法的用户友好性,从而旨在为计算生物学经验较少的用户提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/338e/9624194/6ee76a0817e7/nihms-1836468-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验