Suppr超能文献

深度学习管道在使用 Stardist 和 Cellpose 进行 3D 细胞核识别中的可用性。

Usability of deep learning pipelines for 3D nuclei identification with Stardist and Cellpose.

机构信息

Department of Bioengineering, Northeastern University, Boston, USA.

Department of Electrical and Computer Engineering, Northeastern University, Boston, USA.

出版信息

Cells Dev. 2022 Dec;172:203806. doi: 10.1016/j.cdev.2022.203806. Epub 2022 Aug 25.

Abstract

Segmentation of 3D images to identify cells and their molecular outputs can be difficult and tedious. Machine learning algorithms provide a promising alternative to manual analysis as emerging 3D image processing technology can save considerable time. For those unfamiliar with machine learning or 3D image analysis, the rapid advancement of the field can make navigating the newest software options confusing. In this paper, two open-source machine learning algorithms, Cellpose and Stardist, are compared in their application on a 3D light sheet dataset counting fluorescently stained proliferative cell nuclei. The effects of image tiling and background subtraction are shown through image analysis pipelines for both algorithms. Based on our analysis, the relative ease of use of Cellpose and the absence of need to train a model leaves it a strong option for 3D cell segmentation despite relatively longer processing times. When Cellpose's pretrained model yields results that are not of sufficient quality, or the analysis of a large dataset is required, Stardist may be more appropriate. Despite the time it takes to train the model, Stardist can create a model specialized to the users' dataset that can be iteratively improved until predictions are satisfactory with far lower processing time relative to other methods.

摘要

将 3D 图像分割以识别细胞及其分子产物可能既困难又繁琐。机器学习算法为手动分析提供了一种很有前途的替代方法,因为新兴的 3D 图像处理技术可以节省大量时间。对于不熟悉机器学习或 3D 图像分析的人来说,该领域的快速发展可能会让人感到困惑,难以选择最新的软件选项。在本文中,我们比较了两种开源机器学习算法 Cellpose 和 Stardist 在对 3D 光片数据集进行荧光染色增殖细胞核计数中的应用。通过这两种算法的图像分析流程,展示了图像平铺和背景减除的效果。基于我们的分析,Cellpose 相对易用且无需训练模型,这使其成为 3D 细胞分割的强有力选择,尽管处理时间相对较长。如果 Cellpose 的预训练模型生成的结果质量不够好,或者需要分析大型数据集,则 Stardist 可能更合适。尽管训练模型需要时间,但 Stardist 可以为用户的数据集创建专门的模型,并且可以通过迭代改进模型,直到预测结果令人满意,相对其他方法,处理时间要低得多。

相似文献

3
Cellpose: a generalist algorithm for cellular segmentation.Cellpose:一种通用的细胞分割算法。
Nat Methods. 2021 Jan;18(1):100-106. doi: 10.1038/s41592-020-01018-x. Epub 2020 Dec 14.

引用本文的文献

6
Automated counting of Drosophila imaginal disc cell nuclei.自动计数果蝇 imaginal disc 细胞核。
Biol Open. 2024 Feb 15;13(2). doi: 10.1242/bio.060254. Epub 2024 Feb 22.

本文引用的文献

1
Cellpose 2.0: how to train your own model.Cellpose 2.0:如何训练自己的模型。
Nat Methods. 2022 Dec;19(12):1634-1641. doi: 10.1038/s41592-022-01663-4. Epub 2022 Nov 7.
6
Cellpose: a generalist algorithm for cellular segmentation.Cellpose:一种通用的细胞分割算法。
Nat Methods. 2021 Jan;18(1):100-106. doi: 10.1038/s41592-020-01018-x. Epub 2020 Dec 14.
7
3D visualization of macromolecule synthesis.大分子合成的三维可视化。
Elife. 2020 Oct 14;9:e60354. doi: 10.7554/eLife.60354.
10
ilastik: interactive machine learning for (bio)image analysis.ilastik:用于(生物)图像处理的交互式机器学习。
Nat Methods. 2019 Dec;16(12):1226-1232. doi: 10.1038/s41592-019-0582-9. Epub 2019 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验