Suppr超能文献

患者来源的胶质母细胞瘤培养物作为小分子药物发现的工具。

Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery.

作者信息

Ye Ling F, Reznik Eduard, Korn Joshua M, Lin Fallon, Yang Guizhi, Malesky Kimberly, Gao Hui, Loo Alice, Pagliarini Raymond, Mikkelsen Tom, Lo Donald C, deCarvalho Ana C, Stockwell Brent R

机构信息

Department of Biological Sciences, Columbia University, New York, NY 10027, USA.

Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.

出版信息

Oncotarget. 2020 Jan 28;11(4):443-451. doi: 10.18632/oncotarget.27457.

Abstract

There is a compelling need for new therapeutic strategies for glioblastoma multiforme (GBM). Preclinical target and therapeutic discovery for GBMs is primarily conducted using cell lines grown in serum-containing media, such as U-87 MG, which do not reflect the gene expression profiles of tumors found in GBM patients. To address this lack of representative models, we sought to develop a panel of patient-derived GBM models and characterize their genomic features, using RNA sequencing (RNA-seq) and growth characteristics, both when grown as neurospheres in culture, and grown orthotopically as xenografts in mice. When we compared these with commonly used GBM cell lines in the Cancer Cell Line Encyclopedia (CCLE), we found these patient-derived models to have greater diversity in gene expression and to better correspond to GBMs directly sequenced from patient tumor samples. We also evaluated the potential of these models for targeted therapy, by using the genomic characterization to identify small molecules that inhibit the growth of distinct subsets of GBMs, paving the way for precision medicines for GBM.

摘要

对于多形性胶质母细胞瘤(GBM),迫切需要新的治疗策略。GBM的临床前靶点和治疗方法发现主要使用在含血清培养基中培养的细胞系进行,如U-87 MG,而这些细胞系并不能反映GBM患者肿瘤的基因表达谱。为了解决缺乏代表性模型的问题,我们试图开发一组患者来源的GBM模型,并利用RNA测序(RNA-seq)以及在培养中作为神经球生长和在小鼠体内原位作为异种移植生长时的生长特征,来表征它们的基因组特征。当我们将这些模型与癌症细胞系百科全书(CCLE)中常用的GBM细胞系进行比较时,我们发现这些患者来源的模型在基因表达上具有更大的多样性,并且与直接从患者肿瘤样本测序得到的GBM更相符。我们还通过利用基因组特征来识别抑制不同GBM亚群生长的小分子,评估了这些模型用于靶向治疗的潜力,为GBM的精准药物治疗铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdfb/6996910/357aee9816ac/oncotarget-11-443-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验