Mlynarski Pawel, Delingette Hervé, Alghamdi Hamza, Bondiau Pierre-Yves, Ayache Nicholas
Université Côte d'Azur, Inria, Epione Research Team, Nice, France.
Université Côte d'Azur, Centre Antoine Lacassagne, Nice, France.
J Med Imaging (Bellingham). 2020 Jan;7(1):014502. doi: 10.1117/1.JMI.7.1.014502. Epub 2020 Feb 13.
Planning of radiotherapy involves accurate segmentation of a large number of organs at risk (OAR), i.e., organs for which irradiation doses should be minimized to avoid important side effects of the therapy. We propose a deep learning method for segmentation of OAR inside the head, from magnetic resonance images (MRIs). Our system performs segmentation of eight structures: eye, lens, optic nerve, optic chiasm, pituitary gland, hippocampus, brainstem, and brain. We propose an efficient algorithm to train neural networks for an end-to-end segmentation of multiple and nonexclusive classes, addressing problems related to computational costs and missing ground truth segmentations for a subset of classes. We enforce anatomical consistency of the result in a postprocessing step. In particular, we introduce a graph-based algorithm for segmentation of the optic nerves, enforcing the connectivity between the eyes and the optic chiasm. We report cross-validated quantitative results on a database of 44 contrast-enhanced T1-weighted MRIs with provided segmentations of the considered OAR, which were originally used for radiotherapy planning. In addition, the segmentations produced by our model on an independent test set of 50 MRIs were evaluated by an experienced radiotherapist in order to qualitatively assess their accuracy. The mean distances between produced segmentations and the ground truth ranged from 0.1 to 0.7 mm across different organs. A vast majority (96%) of the produced segmentations were found acceptable for radiotherapy planning.
放射治疗计划涉及对大量危及器官(OAR)进行精确分割,即那些应将照射剂量最小化以避免治疗产生严重副作用的器官。我们提出了一种基于磁共振图像(MRI)对头内OAR进行分割的深度学习方法。我们的系统对八个结构进行分割:眼睛、晶状体、视神经、视交叉、垂体、海马体、脑干和大脑。我们提出了一种高效算法来训练神经网络,以实现对多个非排他性类别的端到端分割,解决与计算成本以及部分类别缺少真实分割标注相关的问题。我们在一个后处理步骤中强制结果的解剖学一致性。特别是,我们引入了一种基于图的算法来分割视神经,确保眼睛和视交叉之间的连通性。我们在一个包含44幅对比增强T1加权MRI的数据库上报告了交叉验证的定量结果,该数据库提供了所考虑的OAR的分割标注,这些MRI最初用于放射治疗计划。此外,我们的模型在一个由50幅MRI组成的独立测试集上生成的分割结果由一位经验丰富的放射治疗师进行评估,以定性评估其准确性。在不同器官上,生成的分割结果与真实标注之间的平均距离在0.1至0.7毫米之间。发现绝大多数(96%)生成的分割结果可用于放射治疗计划。