Suppr超能文献

基于深度学习磁共振成像的脑内危及器官自动分割:准确性及对剂量分布的影响

Deep-learning magnetic resonance imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution.

作者信息

Turcas Andrada, Leucuta Daniel, Balan Cristina, Clementel Enrico, Gheara Cristina, Kacso Alex, Kelly Sarah M, Tanasa Delia, Cernea Dana, Achimas-Cadariu Patriciu

机构信息

The European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, RTQA, Brussels, Belgium.

SIOP Europe, The European Society for Paediatric Oncology (SIOPE), QUARTET Project, Brussels, Belgium.

出版信息

Phys Imaging Radiat Oncol. 2023 Jun 6;27:100454. doi: 10.1016/j.phro.2023.100454. eCollection 2023 Jul.

Abstract

BACKGROUND AND PURPOSE

Normal tissue sparing in radiotherapy relies on proper delineation. While manual contouring is time consuming and subject to inter-observer variability, auto-contouring could optimize workflows and harmonize practice. We assessed the accuracy of a commercial, deep-learning, MRI-based tool for brain organs-at-risk delineation.

MATERIALS AND METHODS

Thirty adult brain tumor patients were retrospectively manually recontoured. Two additional structure sets were obtained: AI (artificial intelligence) and AIedit (manually corrected auto-contours). For 15 selected cases, identical plans were optimized for each structure set. We used Dice Similarity Coefficient (DSC) and mean surface-distance (MSD) for geometric comparison and gamma analysis and dose-volume-histogram comparison for dose metrics evaluation. Wilcoxon signed-ranks test was used for paired data, Spearman coefficient(ρ) for correlations and Bland-Altman plots to assess level of agreement.

RESULTS

Auto-contouring was significantly faster than manual (1.1/20 min, p < 0.01). Median DSC and MSD were 0.7/0.9 mm for AI and 0.8/0.5 mm for AIedit. DSC was significantly correlated with structure size (ρ = 0.76, p < 0.01), with higher DSC for large structures. Median gamma pass rate was 74% (71-81%) for Plan_AI and 82% (75-86%) for Plan_AIedit, with no correlation with DSC or MSD. Differences between Dmean_AI and Dmean_Ref were ≤ 0.2 Gy (p < 0.05). The dose difference was moderately correlated with DSC. Bland Altman plot showed minimal discrepancy (0.1/0) between AI and reference Dmean/Dmax.

CONCLUSIONS

The AI-model showed good accuracy for large structures, but developments are required for smaller ones. Auto-segmentation was significantly faster, with minor differences in dose distribution caused by geometric variations.

摘要

背景与目的

放射治疗中正常组织的保护依赖于精确的轮廓勾画。手动勾画轮廓既耗时又容易受到观察者间差异的影响,而自动勾画轮廓可以优化工作流程并使实践标准化。我们评估了一种基于深度学习的商用磁共振成像(MRI)工具在勾画脑危及器官轮廓方面的准确性。

材料与方法

对30例成人大脑肿瘤患者进行回顾性手动重新勾画轮廓。另外获得了两组结构:人工智能(AI)组和人工智能编辑(AIedit)组(手动校正的自动轮廓)。对于15例选定的病例,针对每组结构优化相同的计划。我们使用骰子相似系数(DSC)和平均表面距离(MSD)进行几何比较,并使用伽马分析和剂量体积直方图比较来评估剂量指标。配对数据采用Wilcoxon符号秩检验,相关性采用Spearman系数(ρ),并使用Bland-Altman图评估一致性水平。

结果

自动勾画轮廓明显比手动勾画更快(1.1/20分钟,p < 0.01)。AI组的DSC中位数和MSD分别为0.7/0.9毫米,AIedit组为0.8/0.5毫米。DSC与结构大小显著相关(ρ = 0.76,p < 0.01),大结构的DSC更高。Plan_AI组的伽马通过率中位数为74%(71 - 81%),Plan_AIedit组为82%(75 - 86%),与DSC或MSD均无相关性。Dmean_AI与Dmean_Ref之间的差异≤0.2 Gy(p < 0.05)。剂量差异与DSC呈中度相关。Bland Altman图显示AI与参考Dmean/Dmax之间的差异极小(0.1/0)。

结论

AI模型对大结构显示出良好的准确性,但对较小结构仍需改进。自动分割明显更快,几何变化引起的剂量分布差异较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10276287/9327b20658b7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验