de Graaf Sytze, Momand Jamo, Mitterbauer Christoph, Lazar Sorin, Kooi Bart J
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands.
Sci Adv. 2020 Jan 31;6(5):eaay4312. doi: 10.1126/sciadv.aay4312. eCollection 2020 Jan.
Hydrogen as a fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals, causing embrittlement. Understanding fundamental behavior of hydrogen at the atomic scale is key to improve the properties of metal-metal hydride systems. However, currently, there is no robust technique capable of visualizing hydrogen atoms. Here, we demonstrate that hydrogen atoms can be imaged unprecedentedly with integrated differential phase contrast, a recently developed technique performed in a scanning transmission electron microscope. Images of the titanium-titanium monohydride interface reveal stability of the hydride phase, originating from the interplay between compressive stress and interfacial coherence. We also uncovered, 30 years after three models were proposed, which one describes the position of hydrogen atoms with respect to the interface. Our work enables previously unidentified research on hydrides and is extendable to all materials containing light and heavy elements, including oxides, nitrides, carbides, and borides.
氢作为一种燃料,可以以高体积密度安全地存储在金属中。然而,它也可能对金属有害,导致脆化。了解氢在原子尺度上的基本行为是改善金属-金属氢化物系统性能的关键。然而,目前还没有一种强大的技术能够可视化氢原子。在这里,我们证明了氢原子可以通过集成差分相衬成像,这是一种最近在扫描透射电子显微镜中开发的技术,以前所未有的方式成像。钛-一氢化钛界面的图像揭示了氢化物相的稳定性,这源于压应力和界面相干性之间的相互作用。我们还发现,在提出三种模型30年后,其中一种模型描述了氢原子相对于界面的位置。我们的工作开启了此前未被识别的关于氢化物的研究,并且可以扩展到所有包含轻元素和重元素的材料,包括氧化物、氮化物、碳化物和硼化物。