Peking University Health Science Center, Beijing, 100871, China.
Department of Radiology, China-Japan Friendship Hospital, 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China.
Eur Radiol. 2020 Jun;30(6):3567-3575. doi: 10.1007/s00330-020-06699-8. Epub 2020 Feb 16.
To take advantage of the deep learning algorithms to detect and calculate clot burden of acute pulmonary embolism (APE) on computed tomographic pulmonary angiography (CTPA).
The training set in this retrospective study consisted of 590 patients (460 with APE and 130 without APE) who underwent CTPA. A fully deep learning convolutional neural network (DL-CNN), called U-Net, was trained for the segmentation of clot. Additionally, an in-house validation set consisted of 288 patients (186 with APE and 102 without APE). In this study, we set different probability thresholds to test the performance of U-Net for the clot detection and selected sensitivity, specificity, and area under the curve (AUC) as the metrics of performance evaluation. Furthermore, we investigated the relationship between the clot burden assessed by the Qanadli score, Mastora score, and other imaging parameters on CTPA and the clot burden calculated by the DL-CNN model.
There was no statistically significant difference in AUCs with the different probability thresholds. When the probability threshold for segmentation was 0.1, the sensitivity and specificity of U-Net in detecting clot respectively were 94.6% and 76.5% while the AUC was 0.926 (95% CI 0.884-0.968). Moreover, this study displayed that the clot burden measured with U-Net was significantly correlated with the Qanadli score (r = 0.819, p < 0.001), Mastora score (r = 0.874, p < 0.001), and right ventricular functional parameters on CTPA.
DL-CNN achieved a high AUC for the detection of pulmonary emboli and can be applied to quantitatively calculate the clot burden of APE patients, which may contribute to reducing the workloads of clinicians.
• Deep learning can detect APE with a good performance and efficiently calculate the clot burden to reduce the physicians' workload. • Clot burden measured with deep learning highly correlates with Qanadli and Mastora scores of CTPA. • Clot burden measured with deep learning correlates with parameters of right ventricular function on CTPA.
利用深度学习算法检测并计算急性肺栓塞(APE)在 CT 肺动脉造影(CTPA)上的血栓负荷。
本回顾性研究的训练集包含 590 例患者(460 例有 APE,130 例无 APE),均行 CTPA 检查。采用一种名为 U-Net 的完全深度学习卷积神经网络(DL-CNN)对血栓进行分割。此外,还包含一个由 288 例患者组成的内部验证集(186 例有 APE,102 例无 APE)。在本研究中,我们设置了不同的概率阈值来测试 U-Net 对血栓检测的性能,并选择灵敏度、特异性和曲线下面积(AUC)作为性能评估的指标。此外,我们还研究了 Qanadli 评分、Mastora 评分和 CTPA 上其他成像参数评估的血栓负荷与 DL-CNN 模型计算的血栓负荷之间的关系。
不同概率阈值的 AUC 无统计学差异。当分割概率阈值为 0.1 时,U-Net 检测血栓的灵敏度和特异性分别为 94.6%和 76.5%,AUC 为 0.926(95%CI 0.884-0.968)。此外,本研究表明,U-Net 测量的血栓负荷与 Qanadli 评分(r=0.819,p<0.001)、Mastora 评分(r=0.874,p<0.001)和 CTPA 上右心室功能参数显著相关。
DL-CNN 对肺栓塞的检测具有较高的 AUC,可用于定量计算 APE 患者的血栓负荷,这可能有助于减轻临床医生的工作量。
深度学习可以很好地检测 APE,并有效地计算血栓负荷,以减少医生的工作量。
深度学习测量的血栓负荷与 CTPA 的 Qanadli 和 Mastora 评分高度相关。
深度学习测量的血栓负荷与 CTPA 上右心室功能参数相关。