Suppr超能文献

利用苔藓模型对影响真核生物鞭毛运动性和育性的进化保守关键因子进行表征。

Characterisation of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model.

作者信息

Meyberg Rabea, Perroud Pierre-François, Haas Fabian B, Schneider Lucas, Heimerl Thomas, Renzaglia Karen S, Rensing Stefan A

机构信息

Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043, Marburg, Germany.

LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043, Marburg, Germany.

出版信息

New Phytol. 2020 Jul;227(2):440-454. doi: 10.1111/nph.16486. Epub 2020 Apr 13.

Abstract

Defects in flagella/cilia are often associated with infertility and disease. Motile male gametes (sperm cells) are an ancestral eukaryotic trait that has been lost in several lineages like flowering plants. Here, we made use of a phenotypic male fertility difference between two moss (Physcomitrella patens) ecotypes to explore spermatozoid function. We compare genetic and epigenetic variation as well as expression profiles between the Gransden and Reute ecotype to identify a set of candidate genes associated with moss male infertility. We generated a loss-of-function mutant of a coiled-coil domain containing 39 (ccdc39) gene that is part of the flagellar hydin network. Defects in mammal and algal homologues of this gene coincide with a loss of fertility, demonstrating the evolutionary conservation of flagellar function related to male fertility across kingdoms. The Ppccdc39 mutant resembles the Gransden phenotype in terms of male fertility. Potentially, several somatic (epi-)mutations occurred during prolonged vegetative propagation of Gransden, causing regulatory differences of for example the homeodomain transcription factor BELL1. Probably these somatic changes are causative for the observed male fertility defect. We propose that moss spermatozoids might be employed as an easily accessible system to study male infertility of humans and animals in terms of flagellar structure and movement.

摘要

鞭毛/纤毛缺陷常与不育和疾病相关。可游动的雄配子(精子细胞)是一种古老的真核生物特征,在开花植物等多个谱系中已经消失。在这里,我们利用两种苔藓(小立碗藓)生态型之间的表型雄性育性差异来探究游动精子的功能。我们比较了格兰斯登(Gransden)和罗伊特(Reute)生态型之间的遗传和表观遗传变异以及表达谱,以确定一组与苔藓雄性不育相关的候选基因。我们构建了一个包含卷曲螺旋结构域39(ccdc39)基因的功能缺失突变体,该基因是鞭毛透明质酸蛋白网络的一部分。该基因在哺乳动物和藻类中的同源物缺陷与育性丧失一致,表明跨王国与雄性育性相关的鞭毛功能具有进化保守性。Ppccdc39突变体在雄性育性方面类似于格兰斯登表型。在格兰斯登长期无性繁殖过程中可能发生了一些体细胞(表观)突变,导致例如同源域转录因子BELL1的调控差异。这些体细胞变化可能是观察到的雄性育性缺陷的原因。我们提出,苔藓游动精子可能作为一种易于获取的系统,用于从鞭毛结构和运动方面研究人类和动物的雄性不育。

相似文献

引用本文的文献

9
Flowering plant embryos: How did we end up here?开花植物胚胎:我们是如何走到这一步的?
Plant Reprod. 2021 Dec;34(4):365-371. doi: 10.1007/s00497-021-00427-y. Epub 2021 Jul 27.

本文引用的文献

5
Cap-Independent mRNA Translation in Germ Cells.生殖细胞中无帽依赖的 mRNA 翻译。
Int J Mol Sci. 2019 Jan 5;20(1):173. doi: 10.3390/ijms20010173.
6
The evolution and patterning of male gametophyte development.雄性配子体发育的演化和模式。
Curr Top Dev Biol. 2019;131:257-298. doi: 10.1016/bs.ctdb.2018.10.008. Epub 2018 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验