Suppr超能文献

藓类植物Physcomitrium patens 和 Marchantia polymorpha 作为研究植物进化细胞和发育生物学的模式系统。

The bryophytes Physcomitrium patens and Marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants.

机构信息

Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.

Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.

出版信息

Plant Cell. 2022 Jan 20;34(1):228-246. doi: 10.1093/plcell/koab218.

Abstract

Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.

摘要

苔藓植物是无维管束的孢子形成植物。与开花植物不同,苔藓植物的配子体(单倍体)世代占优势于孢子体(二倍体)世代。将苔藓植物与开花植物进行比较,可以帮助我们回答进化细胞和发育生物学中提出的一些基本问题。藓纲植物Physcomitrium patens 是第一个基因组测序的苔藓植物。使用同源重组的基因靶向技术,在该物种中进行了许多细胞和发育研究。地钱 Marchantia polymorpha 最近成为一个优秀的模式系统,其大多数调控途径的基因组冗余度较低。随着分子遗传工具(如高效的基因组编辑)的发展,P. patens 和 M. polymorpha 都提供了许多有价值的见解。在这里,我们特别关注细胞和组织水平的极性形成,回顾这些进展。我们检查了关于极化细胞伸长和细胞分裂的细胞机制的现有知识,包括对称和不对称细胞分裂。我们还研究了极性生长素运输在苔藓植物和地钱中的作用。最后,我们讨论了植物进化细胞和发育生物学研究的未来。

相似文献

5
Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes.
Plant Mol Biol. 2021 Nov;107(4-5):213-225. doi: 10.1007/s11103-021-01126-y. Epub 2021 Feb 20.
6
The Moss () : A Model Organism for Non-Seed Plants.
Plant Cell. 2020 May;32(5):1361-1376. doi: 10.1105/tpc.19.00828. Epub 2020 Mar 9.
7
Development and Molecular Genetics of .
Annu Rev Plant Biol. 2021 Jun 17;72:677-702. doi: 10.1146/annurev-arplant-082520-094256. Epub 2021 Mar 8.
8
Morphological Innovation Drives Sperm Release in Bryophytes.
Adv Sci (Weinh). 2024 May;11(20):e2306767. doi: 10.1002/advs.202306767. Epub 2024 Mar 29.
9
Auxin-mediated developmental control in the moss Physcomitrella patens.
J Exp Bot. 2018 Jan 4;69(2):277-290. doi: 10.1093/jxb/erx255.
10
Divergent evolution of the alcohol-forming pathway of wax biosynthesis among bryophytes.
New Phytol. 2024 Jun;242(5):2251-2269. doi: 10.1111/nph.19687. Epub 2024 Mar 19.

引用本文的文献

1
Novel small molecules disrupting polarized cell expansion and development in the moss, .
Plant Biotechnol (Tokyo). 2025 Jun 25;42(2):131-143. doi: 10.5511/plantbiotechnology.25.0209a.
2
Genome-Wide Characterization and Analysis of the Gene Family in Under Abiotic Stresses.
Genes (Basel). 2025 May 1;16(5):555. doi: 10.3390/genes16050555.
3
The genetic puzzle of multicopy genes: challenges and troubleshooting.
Plant Methods. 2025 Mar 7;21(1):32. doi: 10.1186/s13007-025-01329-0.
4
Bryophyte Flora of AlUla County (Saudi Arabia)-Distribution, Ecology, and Conservation.
Plants (Basel). 2025 Jan 9;14(2):170. doi: 10.3390/plants14020170.
6
Cytokinin and ALOG proteins regulate pluripotent stem cell identity in the moss .
Sci Adv. 2024 Aug 30;10(35):eadq6082. doi: 10.1126/sciadv.adq6082. Epub 2024 Aug 28.
7
The BNB-GLID module regulates germline fate determination in Marchantia polymorpha.
Plant Cell. 2024 Sep 3;36(9):3824-3837. doi: 10.1093/plcell/koae206.

本文引用的文献

1
The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles.
Curr Biol. 2021 Oct 11;31(19):4340-4353.e7. doi: 10.1016/j.cub.2021.07.063. Epub 2021 Aug 24.
2
A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens.
Nat Commun. 2021 Jul 22;12(1):4470. doi: 10.1038/s41467-021-24546-2.
3
An Agrobacterium-mediated stable transformation technique for the hornwort model Anthoceros agrestis.
New Phytol. 2021 Nov;232(3):1488-1505. doi: 10.1111/nph.17524. Epub 2021 Jul 19.
4
Development and Molecular Genetics of .
Annu Rev Plant Biol. 2021 Jun 17;72:677-702. doi: 10.1146/annurev-arplant-082520-094256. Epub 2021 Mar 8.
5
Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes.
Plant Mol Biol. 2021 Nov;107(4-5):213-225. doi: 10.1007/s11103-021-01126-y. Epub 2021 Feb 20.
6
NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens.
Curr Biol. 2021 Feb 8;31(3):555-563.e4. doi: 10.1016/j.cub.2020.10.077. Epub 2020 Nov 25.
7
Phyllotaxis from a Single Apical Cell.
Trends Plant Sci. 2021 Feb;26(2):124-131. doi: 10.1016/j.tplants.2020.09.014. Epub 2020 Oct 20.
8
Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia polymorpha.
Curr Biol. 2020 Oct 5;30(19):3833-3840.e4. doi: 10.1016/j.cub.2020.07.016. Epub 2020 Aug 20.
9
The hornworts: morphology, evolution and development.
New Phytol. 2021 Jan;229(2):735-754. doi: 10.1111/nph.16874. Epub 2020 Sep 15.
10
Principles and mechanisms of asymmetric cell division.
Development. 2020 Jun 29;147(13):dev167650. doi: 10.1242/dev.167650.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验