Suppr超能文献

基于子图摘熵的网络方法在青少年强迫症静息态功能磁共振中的分类研究。

Sub-graph entropy based network approaches for classifying adolescent obsessive-compulsive disorder from resting-state functional MRI.

机构信息

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis.

Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis.

出版信息

Neuroimage Clin. 2020;26:102208. doi: 10.1016/j.nicl.2020.102208. Epub 2020 Feb 6.

Abstract

This paper presents a novel approach for classifying obsessive-compulsive disorder (OCD) in adolescents from resting-state fMRI data. Currently, the state-of-the-art for diagnosing OCD in youth involves interviews with adolescent patients and their parents by an experienced clinician, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), and behavioral observation. Discovering signal processing and network-based biomarkers from functional magnetic resonance imaging (fMRI) scans of patients has the potential to assist clinicians in their diagnostic assessments of adolescents suffering from OCD. This paper investigates the clinical diagnostic utility of a set of univariate, bivariate and multivariate features extracted from resting-state fMRI using an information-theoretic approach in 15 adolescents with OCD and 13 matched healthy controls. Results indicate that an information-theoretic approach based on sub-graph entropy is capable of classifying OCD vs. healthy subjects with high accuracy. Mean time-series were extracted from 85 brain regions and were used to calculate Shannon wavelet entropy, Pearson correlation matrix, network features and sub-graph entropy. In addition, two special cases of sub-graph entropy, namely node and edge entropy, were investigated to identify important brain regions and edges from OCD patients. A leave-one-out cross-validation method was used for the final predictor performance. The proposed methodology using differential sub-graph (edge) entropy achieved an accuracy of 0.89 with specificity 1 and sensitivity 0.80 using leave-one-out cross-validation with in-fold feature ranking and selection. The high classification accuracy indicates the predictive power of the sub-network as well as edge entropy metric.

摘要

本文提出了一种从静息态 fMRI 数据中对青少年强迫症 (OCD) 进行分类的新方法。目前,对青少年 OCD 的诊断方法主要包括经验丰富的临床医生对青少年患者及其父母进行访谈、基于《精神障碍诊断与统计手册》(DSM) 的症状评分量表以及行为观察。从患者的功能磁共振成像 (fMRI) 扫描中发现信号处理和基于网络的生物标志物,有可能帮助临床医生对患有 OCD 的青少年进行诊断评估。本文使用信息论方法研究了一组从静息态 fMRI 中提取的单变量、双变量和多变量特征在 15 名 OCD 青少年和 13 名匹配的健康对照组中的临床诊断效用。结果表明,基于子图熵的信息论方法能够以高精度对 OCD 与健康受试者进行分类。从 85 个脑区提取平均时间序列,并用于计算香农小波熵、皮尔逊相关矩阵、网络特征和子图熵。此外,还研究了子图熵的两个特殊情况,即节点熵和边缘熵,以从 OCD 患者中识别重要的脑区和边缘。采用留一交叉验证法对最终预测器性能进行评估。使用差分子图(边缘)熵的方法,通过留一交叉验证进行特征排序和选择,获得了 0.89 的准确率,特异性为 1,敏感性为 0.80。高分类准确率表明子网络和边缘熵指标具有预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff51/7025090/1e27d1a92f38/gr8.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验