IEEE J Biomed Health Inform. 2021 Jul;25(7):2604-2614. doi: 10.1109/JBHI.2020.3043427. Epub 2021 Jul 27.
This paper introduces an approach for classifying adolescents suffering from MDD using resting-state fMRI. Accurate diagnosis of MDD involves interviews with adolescent patients and their parents, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), behavioral observation as well as the experience of a clinician. Discovering predictive biomarkers for diagnosing MDD patients using functional magnetic resonance imaging (fMRI) scans can assist the clinicians in their diagnostic assessments. This paper investigates various static and dynamic connectivity measures extracted from resting-state fMRI for assisting with MDD diagnosis. First, absolute Pearson correlation matrices from 85 brain regions are computed and they are used to calculate static features for predicting MDD. A predictive sub-network extracted using sub-graph entropy classifies adolescent MDD vs. typical healthy controls with high accuracy, sensitivity and specificity. Next, approaches utilizing dynamic connectivity are employed to extract tensor based, independent component based and principal component based subject specific attributes. Finally, features from static and dynamic approaches are combined to create a feature vector for classification. A leave-one-out cross-validation method is used for the final predictor performance. Out of 49 adolescents with MDD and 33 matched healthy controls, a support vector machine (SVM) classifier using a radial basis function (RBF) kernel using differential sub-graph entropy combined with dynamic connectivity features classifies MDD vs. healthy controls with an accuracy of 0.82 for leave-one-out cross-validation. This classifier has specificity and sensitivity of 0.79 and 0.84, respectively.
本文提出了一种使用静息态 fMRI 对患有 MDD 的青少年进行分类的方法。MDD 的准确诊断涉及对青少年患者及其父母进行访谈、基于《精神障碍诊断与统计手册》(DSM)的症状评分量表、行为观察以及临床医生的经验。使用功能磁共振成像(fMRI)扫描发现用于诊断 MDD 患者的预测性生物标志物,可以帮助临床医生进行诊断评估。本文研究了从静息态 fMRI 中提取的各种静态和动态连通性测量方法,以协助 MDD 诊断。首先,计算来自 85 个大脑区域的绝对 Pearson 相关矩阵,并使用它们计算用于预测 MDD 的静态特征。使用子图熵提取的预测子网络以高精度、高灵敏度和高特异性对青少年 MDD 与典型健康对照组进行分类。接下来,采用基于动态连通性的方法提取基于张量、基于独立分量和基于主成分的主题特定属性。最后,将静态和动态方法的特征结合起来创建用于分类的特征向量。使用留一交叉验证方法评估最终预测器的性能。在 49 名患有 MDD 的青少年和 33 名匹配的健康对照组中,使用基于径向基函数(RBF)核的支持向量机(SVM)分类器,使用差分子图熵结合动态连通性特征,对 MDD 与健康对照组进行分类,留一交叉验证的准确率为 0.82。该分类器的特异性和敏感性分别为 0.79 和 0.84。