IEEE Trans Neural Syst Rehabil Eng. 2021;29:1651-1660. doi: 10.1109/TNSRE.2021.3105432. Epub 2021 Aug 26.
Mental disorders are a major source of disability, with few effective treatments. It has recently been argued that these diseases might be effectively treated by focusing on decision-making, and specifically remediating decision-making deficits that act as "ingredients" in these disorders. Prior work showed that direct electrical brain stimulation can enhance human cognitive control, and consequently decision-making. This raises a challenge of detecting cognitive control lapses directly from electrical brain activity. Here, we demonstrate approaches to overcome that challenge. We propose a novel method, referred to as maximal variance node merging (MVNM), that merges nodes within a brain region to construct informative inter-region brain networks. We employ this method to estimate functional (correlational) and effective (causal) networks using local field potentials (LFP) during a cognitive behavioral task. The effective networks computed using convergent cross mapping differentiate task engagement from background neural activity with 85% median classification accuracy. We also derive task engagement networks (TENs): networks that constitute the most discriminative inter-region connections. Subsequent graph analysis illustrates the crucial role of the dorsolateral prefrontal cortex (dlPFC) in task engagement, consistent with a widely accepted model for cognition. We also show that task engagement is linked to prefrontal cortex theta (4-8 Hz) oscillations. We, therefore, identify objective biomarkers associated with task engagement. These approaches may generalize to other cognitive functions, forming the basis of a network-based approach to detecting and rectifying decision deficits.
精神障碍是残疾的主要来源,但目前有效的治疗方法却很少。最近有人提出,通过关注决策,并特别纠正作为这些疾病“成分”的决策缺陷,这些疾病可能会得到有效治疗。先前的工作表明,直接电脑刺激可以增强人类的认知控制能力,从而改善决策能力。这就提出了一个从大脑电活动中直接检测认知控制失误的挑战。在这里,我们展示了克服这一挑战的方法。我们提出了一种新的方法,称为最大方差节点合并(MVNM),该方法将大脑区域内的节点合并在一起,构建信息丰富的区域间大脑网络。我们采用这种方法,使用局部场电位(LFP)在认知行为任务中估计功能(相关)和有效(因果)网络。使用收敛交叉映射计算的有效网络以 85%的中位数分类准确率区分任务参与度和背景神经活动。我们还推导出任务参与网络(TEN):构成最具区分力的区域间连接的网络。随后的图分析说明了背外侧前额叶皮层(dlPFC)在任务参与中的关键作用,这与认知的广泛接受模型一致。我们还表明,任务参与与前额叶皮层θ(4-8 Hz)振荡有关。因此,我们确定了与任务参与相关的客观生物标志物。这些方法可能适用于其他认知功能,为基于网络的检测和纠正决策缺陷的方法奠定基础。