IEEE J Biomed Health Inform. 2019 Jan;23(1):342-350. doi: 10.1109/JBHI.2018.2796588. Epub 2018 Jan 23.
The fractional amplitude of low-frequency fluctuations (fALFF) has been widely used as potential clinical biomarkers for resting-state functional-magnetic-resonance-imaging-based schizophrenia diagnosis. How-ever, previous studies usually measure the fALFF with specific bands from 0.01 to 0.08 Hz, which cannot fully delineate the complex variations of spontaneous fluctuations in the resting-state brain. In addition, fALFF data are intrinsically constrained by the brain structure, but most of the traditional methods have not consider it in feature selection. For addressing these problems, we propose a model to classify schizophrenia in multifrequency bands with tree-guided group sparse learning. In detail, we first acquire the fALFF data in multifrequency bands (i.e., slow-5: 0.01-0.027 Hz, slow-4: 0.027-0.073 Hz, slow-3: 0.073-0.198 Hz, and slow-2: 0.198-0.25 Hz). Then, we divide the whole brain into different candidate patches and select those significant patches related to schizophrenia using random forest-based important score. Moreover, we use tree-structured sparse learning method for feature selection with the above patch spatial constraint. Finally, considering biomarkers from multifrequency bands can reflect complementary information among multiple-frequency bands, we adopt the multikernel learning method to combine features of multifrequency bands for classification. Our experimental results show that these biomarkers from multifrequency bands can achieve a classification accuracy of 91.1% on 17 schizophrenia patients and 17 healthy controls, further demonstrating that the multifrequency bands analysis can better account for classification of schizophrenia.
低频振幅分数(fALFF)已被广泛用作基于静息态功能磁共振成像的精神分裂症诊断的潜在临床生物标志物。然而,以前的研究通常使用特定频段(0.01 到 0.08 Hz)来测量 fALFF,这不能充分描绘静息态大脑中自发性波动的复杂变化。此外,fALFF 数据本质上受到大脑结构的限制,但大多数传统方法在特征选择中并未考虑到这一点。为了解决这些问题,我们提出了一种在多频段下使用树引导的分组稀疏学习来分类精神分裂症的模型。具体来说,我们首先在多频段(即慢 5:0.01-0.027 Hz、慢 4:0.027-0.073 Hz、慢 3:0.073-0.198 Hz 和慢 2:0.198-0.25 Hz)中获取 fALFF 数据。然后,我们将整个大脑分为不同的候选斑块,并使用基于随机森林的重要得分选择与精神分裂症相关的显著斑块。此外,我们使用基于树结构的稀疏学习方法,在上述斑块空间约束下进行特征选择。最后,考虑到多频段的生物标志物可以反映多个频段之间的互补信息,我们采用多核学习方法来组合多频段的特征进行分类。我们的实验结果表明,这些多频段的生物标志物可以在 17 名精神分裂症患者和 17 名健康对照组中实现 91.1%的分类准确率,进一步证明了多频段分析可以更好地用于精神分裂症的分类。