Suppr超能文献

具有领域不变性的眼底图像质量评估。

Domain-invariant interpretable fundus image quality assessment.

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China.

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China.

出版信息

Med Image Anal. 2020 Apr;61:101654. doi: 10.1016/j.media.2020.101654. Epub 2020 Jan 30.

Abstract

Objective and quantitative assessment of fundus image quality is essential for the diagnosis of retinal diseases. The major factors in fundus image quality assessment are image artifact, clarity, and field definition. Unfortunately, most of existing quality assessment methods focus on the quality of overall image, without interpretable quality feedback for real-time adjustment. Furthermore, these models are often sensitive to the specific imaging devices, and cannot generalize well under different imaging conditions. This paper presents a new multi-task domain adaptation framework to automatically assess fundus image quality. The proposed framework provides interpretable quality assessment with both quantitative scores and quality visualization for potential real-time image recapture with proper adjustment. In particular, the present approach can detect optic disc and fovea structures as landmarks, to assist the assessment through coarse-to-fine feature encoding. The framework also exploit semi-tied adversarial discriminative domain adaptation to make the model generalizable across different data sources. Experimental results demonstrated that the proposed algorithm outperforms different state-of-the-art approaches and achieves an area under the ROC curve of 0.9455 for the overall quality classification.

摘要

客观、定量地评估眼底图像质量对于视网膜疾病的诊断至关重要。眼底图像质量评估的主要因素包括图像伪影、清晰度和视野定义。不幸的是,现有的大多数质量评估方法都侧重于整体图像的质量,而没有可解释的质量反馈来进行实时调整。此外,这些模型通常对特定的成像设备敏感,在不同的成像条件下不能很好地泛化。本文提出了一种新的多任务领域自适应框架,用于自动评估眼底图像质量。所提出的框架提供了可解释的质量评估,包括定量分数和质量可视化,以便在适当调整后进行潜在的实时图像重捕获。特别是,本方法可以检测视盘和黄斑结构作为地标,通过从粗到精的特征编码来辅助评估。该框架还利用半绑定对抗判别领域自适应,使模型能够在不同的数据源之间具有通用性。实验结果表明,所提出的算法优于不同的最先进方法,在整体质量分类方面的 ROC 曲线下面积达到 0.9455。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验