文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在眼科学中的应用:通往现实临床的道路。

Artificial intelligence in ophthalmology: The path to the real-world clinic.

机构信息

Ningbo Eye Hospital, Wenzhou Medical University, Ningbo 315000, China; School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

出版信息

Cell Rep Med. 2023 Jul 18;4(7):101095. doi: 10.1016/j.xcrm.2023.101095. Epub 2023 Jun 28.


DOI:10.1016/j.xcrm.2023.101095
PMID:37385253
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10394169/
Abstract

Artificial intelligence (AI) has great potential to transform healthcare by enhancing the workflow and productivity of clinicians, enabling existing staff to serve more patients, improving patient outcomes, and reducing health disparities. In the field of ophthalmology, AI systems have shown performance comparable with or even better than experienced ophthalmologists in tasks such as diabetic retinopathy detection and grading. However, despite these quite good results, very few AI systems have been deployed in real-world clinical settings, challenging the true value of these systems. This review provides an overview of the current main AI applications in ophthalmology, describes the challenges that need to be overcome prior to clinical implementation of the AI systems, and discusses the strategies that may pave the way to the clinical translation of these systems.

摘要

人工智能(AI)具有通过提高临床医生的工作流程和生产力,使现有员工能够为更多患者提供服务,改善患者预后并减少健康差距来改变医疗保健的巨大潜力。在眼科领域,人工智能系统在糖尿病视网膜病变检测和分级等任务中的表现可与经验丰富的眼科医生相媲美,甚至更好。然而,尽管取得了这些相当不错的结果,但在实际临床环境中部署的人工智能系统却很少,这对这些系统的真正价值提出了挑战。本综述概述了当前眼科领域的主要人工智能应用,描述了在将人工智能系统临床实施之前需要克服的挑战,并讨论了可能为这些系统的临床转化铺平道路的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/85c1971712a0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/7da5dc49c535/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/8f1244d41648/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/33be1fdb2aa4/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/f1457d37b37f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/85c1971712a0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/7da5dc49c535/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/8f1244d41648/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/33be1fdb2aa4/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/f1457d37b37f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658a/10394169/85c1971712a0/gr4.jpg

相似文献

[1]
Artificial intelligence in ophthalmology: The path to the real-world clinic.

Cell Rep Med. 2023-7-18

[2]
Artificial Intelligence in Ophthalmology - Status Quo and Future Perspectives.

Semin Ophthalmol. 2023-4

[3]
Artificial intelligence and deep learning in ophthalmology.

Br J Ophthalmol. 2018-10-25

[4]
Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application.

Curr Diab Rep. 2019-7-31

[5]
Current state and future prospects of artificial intelligence in ophthalmology: a review.

Clin Exp Ophthalmol. 2018-9-30

[6]
Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology.

Br J Ophthalmol. 2021-2

[7]
Considerations for Artificial Intelligence Real-World Implementation in Ophthalmology: Providers' and Patients' Perspectives.

Asia Pac J Ophthalmol (Phila).

[8]
Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective.

Prog Retin Eye Res. 2021-5

[9]
[Artificial intelligence based on images in ophthalmology].

Zhonghua Yan Ke Za Zhi. 2021-6-11

[10]
Insights into the growing popularity of artificial intelligence in ophthalmology.

Indian J Ophthalmol. 2020-7

引用本文的文献

[1]
Role of artificial intelligence-based ocular biomarkers in hepatobiliary diseases: A scoping review.

World J Hepatol. 2025-8-27

[2]
Artificial intelligence-based apps for screening and diagnosing diabetic retinopathy and common ocular disorders.

World J Methodol. 2025-12-20

[3]
Can artificial intelligence with multimodal imaging outperform traditional methods in predicting age-related macular degeneration progression? A systematic review and exploratory meta-analysis.

BMC Med Inform Decis Mak. 2025-9-1

[4]
An artificial intelligence cloud platform for OCT-based retinal anomalies screening system in real clinical environments.

NPJ Digit Med. 2025-8-29

[5]
A Lightweight CNN for Multiclass Retinal Disease Screening with Explainable AI.

J Imaging. 2025-8-15

[6]
ChatGPT Assisting Diagnosis of Neuro-Ophthalmology Diseases Based on Case Reports.

J Neuroophthalmol. 2024-10-10

[7]
Enabling Physicians to Make an Informed Adoption Decision on Artificial Intelligence Applications in Medical Imaging Diagnostics: Qualitative Study.

J Med Internet Res. 2025-8-12

[8]
A Practical Guide to Evaluating Artificial Intelligence Imaging Models in Scientific Literature.

Ophthalmol Sci. 2025-6-9

[9]
The application of artificial intelligence-generated content in ophthalmology education.

Front Med (Lausanne). 2025-7-18

[10]
Deep learning-based classification of multiple fundus diseases using ultra-widefield images.

Front Cell Dev Biol. 2025-7-17

本文引用的文献

[1]
Detecting visually significant cataract using retinal photograph-based deep learning.

Nat Aging. 2022-3

[2]
Solving data quality issues of fundus images in real-world settings by ophthalmic AI.

Cell Rep Med. 2023-2-21

[3]
The impact of inconsistent human annotations on AI driven clinical decision making.

NPJ Digit Med. 2023-2-21

[4]
DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence.

Cell Rep Med. 2023-2-21

[5]
Type 2 diabetes.

Lancet. 2022-11-19

[6]
Overcoming regional limitations: transfer learning for cross-regional microbial-based diagnosis of diseases.

Gut. 2023-10

[7]
Image-Based Differentiation of Bacterial and Fungal Keratitis Using Deep Convolutional Neural Networks.

Ophthalmol Sci. 2022-1-29

[8]
A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study.

Lancet Digit Health. 2022-11

[9]
DeepDRiD: Diabetic Retinopathy-Grading and Image Quality Estimation Challenge.

Patterns (N Y). 2022-5-20

[10]
EyeHealer: A large-scale anterior eye segment dataset with eye structure and lesion annotations.

Precis Clin Med. 2021-4-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索