Physical Chemistry Department, Lund University, Lund, Sweden.
Random Walk Imaging AB, Lund, Sweden.
NMR Biomed. 2020 Dec;33(12):e4267. doi: 10.1002/nbm.4267. Epub 2020 Feb 17.
In biological tissues, typical MRI voxels comprise multiple microscopic environments, the local organization of which can be captured by microscopic diffusion tensors. The measured diffusion MRI signal can, therefore, be written as the multidimensional Laplace transform of an intravoxel diffusion tensor distribution (DTD). Tensor-valued diffusion encoding schemes have been designed to probe specific features of the DTD, and several algorithms have been introduced to invert such data and estimate statistical descriptors of the DTD, such as the mean diffusivity, the variance of isotropic diffusivities, and the mean squared diffusion anisotropy. However, the accuracy and precision of these estimations have not been assessed systematically and compared across methods. In this article, we perform and compare such estimations in silico for a one-dimensional Gamma fit, a generalized two-term cumulant approach, and two-dimensional and four-dimensional Monte-Carlo-based inversion techniques, using a clinically feasible tensor-valued acquisition scheme. In particular, we compare their performance at different signal-to-noise ratios (SNRs) for voxel contents varying in terms of the aforementioned statistical descriptors, orientational order, and fractions of isotropic and anisotropic components. We find that all inversion techniques share similar precision (except for a lower precision of the two-dimensional Monte Carlo inversion) but differ in terms of accuracy. While the Gamma fit exhibits infinite-SNR biases when the signal deviates strongly from monoexponentiality and is unaffected by orientational order, the generalized cumulant approach shows infinite-SNR biases when this deviation originates from the variance in isotropic diffusivities or from the low orientational order of anisotropic diffusion components. The two-dimensional Monte Carlo inversion shows remarkable accuracy in all systems studied, given that the acquisition scheme possesses enough directions to yield a rotationally invariant powder average. The four-dimensional Monte Carlo inversion presents no infinite-SNR bias, but suffers significantly from noise in the data, while preserving good contrast in most systems investigated.
在生物组织中,典型的 MRI 体素包含多个微观环境,其局部组织可以通过微观扩散张量来捕获。因此,测量的扩散 MRI 信号可以表示为体素内扩散张量分布 (DTD) 的多维拉普拉斯变换。张量值扩散编码方案已被设计用于探测 DTD 的特定特征,并且已经引入了几种算法来反转这种数据并估计 DTD 的统计描述符,例如平均扩散系数、各向同性扩散系数的方差和平均平方扩散各向异性。然而,这些估计的准确性和精度尚未在系统内进行评估,并在方法之间进行比较。在本文中,我们使用临床可行的张量值采集方案,在计算机上对一维伽马拟合、广义双项累积方法以及二维和四维蒙特卡罗反演技术进行了此类估计,并进行了比较。特别是,我们比较了它们在不同信噪比 (SNR) 下对上述统计描述符、取向有序度以及各向同性和各向异性成分分数变化的体素内容的性能。我们发现,所有反演技术的精度都相似(除了二维蒙特卡罗反演的精度较低),但准确性不同。伽马拟合在信号强烈偏离单指数时表现出无限 SNR 偏差,并且不受取向有序度的影响,而广义累积方法在这种偏差源于各向同性扩散系数的方差或各向异性扩散分量的低取向有序度时表现出无限 SNR 偏差。二维蒙特卡罗反演在研究的所有系统中都表现出出色的准确性,前提是采集方案具有足够的方向以产生旋转不变的粉末平均值。四维蒙特卡罗反演没有无限 SNR 偏差,但在数据中存在显著的噪声,同时在大多数研究的系统中保持良好的对比度。